Structure and function of channelrhodopsin-2 by cryo electron crystallography

Channelrhodopsin-2 (ChR2) is a light-gated cation selective channel from the unicellular alga Chlamydomonas reinhardtii, which is involved in phototaxis and photophobic responses. As other rhodopsins, ChR2 comprises a se
Channelrhodopsin-2 (ChR2) is a light-gated cation selective channel from the unicellular alga Chlamydomonas reinhardtii, which is involved in phototaxis and photophobic responses. As other rhodopsins, ChR2 comprises a seven-transmembrane helix (TMH) motif and a retinal as the light-sensitive chromophore. The chromophore is covalently attached via a protonated Schiff base to the conserved lysine residue Lys257 located in TMH7. Based on its primary sequence and the all-trans configuration of the retinal in the ground state, ChR2 is assigned to the type I rhodopsins, also referred to as microbial-type rhodopsins. Upon light activation, the retinal isomerizes from the all-trans to the 13-cis form. This photoisomerization, which is accompanied by conformational changes of the protein, eventually leads to the opening of the channel and cation translocation. Cation flux during the conductive state leads to depolarization of the cell membrane and subsequent triggering of action potentials when expressed in neurons. Therefore, ChR2 has become the most versatile optogenetic tool, enabling a non-invasive investigation of neural circuits at high spatial and temporal resolution. With the rapidly increasing importance of ChR2 as a tool in neurobiology and cell biology, structural information is the prerequisite to an unambiguous understanding of the molecular mechanisms of this unique light-activated ion channel. The coupling between isomerization and structural alterations is well understood for other microbial-type rhodopsins, like bacteriorhodopsin (bR), halorhodopsin (HR) and sensory rhodopsin II (SRII). In case of ChR2, the first data on light-induced conformational changes came from spectroscopic studies and structural information is still missing. However, in order to fully understand the mechanism of light transduction by ChR2, it is necessary to determine the changes in the protein structure at specific steps in the photocycle.

By the time I started my PhD thesis, there was no structural information of ChR2 available. Therefore, the objective of this thesis was to obtain structural information of the transmembrane domain containing the first 315 amino acids of ChR2 by cryo electron crystallography. Besides revealing the structure of membrane proteins, cryo-EM of two-dimensional (2D) crystals is ideal for investigating conformational changes in membrane proteins induced by different stimuli. Therefore, the second objective of my thesis was the investigation of light-induced conformational changes in the slow C128T ChR2 mutant. The ~1,000 times longer lifetime of the open state of the C128T mutant compared to the wild-type allowed to trap different intermediates that accumulate during the photocycle.

In 2012, the X-ray structure of a channelrhodopsin-1/channelrhodopsin-2 chimaera (C1C2) at 2.3 Å resolution in the closed dark-adapted state was published (Kato et al., 2012). The structure revealed the essential molecular architecture of C1C2, including the retinal-binding pocket and the putative cation conduction pathway. Together with biochemical, spectroscopic, mutagenesis experiments, and the high-resolution model, some functionally important residues of ChR2 have been identified. However, unambiguous explanation of the molecular determinants that contribute to activation (gating) and transport were still mostly unknown.

RESULTS AND CONCLUSIONS

The first half of my theses dealt with 2D crystallization of ChR2. I succeeded in obtaining 2D crystals of ChR2 of four different types, which differed in size, crystal packing, crystal contacts and resolution, yielding structure factors up to 6 Å resolution. The crystals were grown by reconstituting the protein with different lipids at various lipid-to-protein ratios. The best crystals formed with the synthetic lipid DMPC and EPL upon detergent removal by dialysis. The projection maps calculated from these crystals revealed the overall structure of C128T ChR2 at 6 Å resolution and were published in 2011 (Müller et al., 2011). Surprisingly, ChR2 was found to be a dimer in all crystal types. The ChR2 dimer was stable both in detergent solution and in the presence of lipids for 2D crystallization. The monomers clearly showed the expected densities for the seven TMHs.
The arrangement of the ChR2 dimers on the four 2D lattices was different. However, comparison of the individual rojection maps revealed no significant differences within the ChR2 interface in the four crystal forms. The observation that the structure of the dimer was the same in all four crystal forms and in different lipids suggested strong specific contacts between the two protomers and implied that the protein was also dimeric in the native membrane. These findings were in agreement with Western blot analysis of plasma membranes from oocytes expressing ChR2 and laser-induced liquid bead ion desorption mass spectrometry, which both showed ChR2 as a dimer. The unusual stability of the ChR2 dimer contrasts with other microbial rhodopsins, which exist in different oligomeric states, i.e. monomers, trimers or dimers. These observations raised the question whether the functional unit is the monomer or the dimer.
The comparison of the projection map of the light-driven proton pump bR at the same resolution showed similar overall dimensions. Based on this comparison, the densities which became evident in the ChR2 projection maps could be assigned to the corresponding seven densities in bR. The shape of the densities near the dimer interface suggested that TMHs 2, 3, and 4 are oriented more or less perpendicular to the membrane plane, while the other four helices appear to be more tilted, as in bR.
Based on the high-resolution bR structure and the projection structures obtained, I have built a homology model. On the basis of this homology model, several residues found in the dimer interface were selected for mutational studies in order to disrupt the dimer interface.

The investigation of light-induced conformational changes in C128T ChR2 was the second part of my thesis. I designed an experimental setup for trapping light-induced conformational changes in C128T ChR2. In addition, I optimized the sample preparation in a way that the different illumination conditions did not alter the quality of the crystals. I have trapped two different functional states, namely the conductive open state and the non-conductive closed dark-adapted state.
In order to visualize the location and the extent of conformational changes, projection difference maps were calculated between the open and the closed state. Visual inspection of the difference maps between the open and the two closed states revealed three difference peaks that map to the TMHs 2, 6, and 7, indicating significant and specific rearrangements of these helices. The strong pair of positive/negative peaks at TMH6 suggests an outward tilt movement of approximately 2 Å. Close comparison of similar work on bR revealed that this movement is likely to occur at the cytoplasmic end of TMH6. A second highly significant negative peak is observed at TMH7, indicating a less pronounced tilt compared to TMH6. The third negative peak at TMH2 indicates a loss of density in this region. No significant differences were recorded at the TMH1, 5 and at the dimer interface formed by TMH3 and 4.
I succeeded in trapping and characterizing the open and closed state in the photocycle of ChR2 and could demonstrate that the transition from the closed to the open state is linked to significant light-induced tilt movements of TMH6 and 7, plus a loss of order in TMH2. These conformational changes are likely to create a large water-filled conducting pore, which seems to be required for the conductance of up to 2,000 ions per photocycle. The previously mentioned spectroscopic studies support the difference structures I obtained. This approach sets the stage for studying structural changes accompanying the formation and decay of other photocycle intermediates in ChR2. Future studies will aim at three-dimensional maps of the open and closed state at higher resolution.
show moreshow less

Download full text files

  • application/pdf Thesis_Maria_Mueller.pdf (32963 KB)

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Maria Müller
URN:urn:nbn:de:hebis:30:3-401531
Referee:Clemens Glaubitz, Werner Kühlbrandt
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/06/02
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/03/31
Release Date:2016/06/02
Pagenumber:166
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS PPN:386438986
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $