Extraktion und Transport von Strahlen aus negativen Wasserstoffionen

Extraction and transport of negative ion beams

  • Bei den Projekten wie der Europäischen und der Amerikanischen Spallationsneutronenquelle aber auch den geplanten aktuellen Großprojekten wie dem Upgrade von CERN oder ISIS werden negative Ionen benötigt. Bei solchen Anlagen werden am Ende des üblichen linearen Beschleunigers Speicherringe eingesetzt, die den Teilchenstrom akkumulieren und danach longitudinal komprimieren. Durch die Verwendung eines Strahls aus negativen Ionen kann die Injektion in den Speicherring wesentlich vereinfacht werden. In der vorliegenden Dissertation wurde die Extraktion und der Transport von negativen Wasserstoffionen für den ersten Abschnitt eines Linearbeschleunigers, bestehend aus Quelle, Extraktion und niederenergetischem Strahltransport (LEBT), sowohl experimentell als auch theoretisch untersucht. In dieser Sektion wird der grundlegende Strahlstrom und die Strahlqualität eines Linearbeschleunigers definiert. Eine komplette Untersuchung dieses Abschnitts lag bis dato für negative Ionen nicht vor. Um die Unterschiede aufzudecken und die einflußnehmenden Größen zu bewerten, mußten alle Experimente sowohl mit positiven als auch mit negativen Ionen durchgeführt werden. In allen Sektionen führen verschiedene Faktoren zu Strahlstromverlusten und Qualitätsverschlechterung, sprich Emittanzvergrößerung. Im Zuge dieser Arbeit wurde eine Quelle für negative Ionen entwickelt und gebaut und eine neue Methode zur Produktionssteigerung von negativen Ionen entwickelt. Die Innenwand der Plasmakammer der Ionenquelle wurde mit dem Edelmetallkatalysator Platin beschichtet. Die Plasmazusammensetzung innerhalb der Quelle verlagerte sich dadurch auf 80–90% H3 , 5-10% H2 und nur noch ein geringer Anteil an Protonen. Dieser hohe molekulare Anteil war über eine große Spanne aller Plasmaparameter stabil und führt zu einer drastischen Produktionssteigerung von angeregtem H2 und H- . Zur Formierung des Ionenstrahls wurde von mir ein sogenannter stromtoleranten Extraktor entwickelt. Trotz einer Veränderung des extrahierten Stroms um den Faktor 5 kommt es mit diesem Extraktor zu keinem nennenswerten Emittanzwachstum. Dieser eignet sich allgemein für die Extraktion gepulster Ionenstrahlen, im Besonderen aber für die Extraktion von negativen Ionen, da hierbei gleichzeitig Elektronen mit extrahiert werden. Dieser meist hohe Strahlanteil aus hochenergetischen Elektronen muß vor dem Einschuß der negativen Ionen in den RFQ durch ein geeignetes System aus dem Strahl ausgelenkt und abgeführt werden. Grundlagen, Entwicklung und Einflüsse dieser sogenannten Dumpingsysteme werden in Kap. 5 beschrieben. Für die Realisierung einer Niederenergietransportstrecke für negative Ionen stehen die beiden Möglichkeiten des magnetischen LEBT (Kap. 6) und des elektrostatischen LEBT (Kap. 7) zu Verfügung. Mit verschiedenen Meßaufbauten werden im anschließenden Kap. 8 die in den vorigen Kapiteln aufgeführten relevanten Größen der Erzeugung, der Extraktion und des Transport experimentell untersucht. Zusätzlich zu den bekannten klassischen Analyseverfahren kommen im Rahmen dieser Arbeit entwickelte optische Meßmethoden zum Einsatz, mit deren Hilfe man Plasmatemperatur und Plasmaverteilung innerhalb der Ionenquelle bestimmen kann. Mit Hilfe der Untersuchungen gelang es, die Unterschiede zwischen der Extraktion von negativen Ionen und von positiven Ionen aufzuzeigen und mit Hilfe der experimentellen Beobachtungen ein neues Modell für die Extraktion von negativen Ionen zu entwickeln. Mit der vorliegenden Arbeit wurde zudem gezeigt: - Der extrahierbare negative Strom ist hauptsächlich abhängig vom Diffusionsprozeß der Teilchen durch einen positiven Potentialwall innerhalb der Ionenquelle. - Durch Kompensation der magnetischen Felder in der Extraktionsregion wird die Emittanz reduziert und der Strom gesteigert. - Der beobachtete planare Plasmameniskus wird maßgeblich durch die rückfließenden Restgasionen beeinflußt. - Der Transport der negativen Ionen mit einer magnetischen LEBT stellt kein wesentliches Problem dar, da eine hinreichende Anzahl an positiven Restgasionen für den raumladungs-kompensierten Transport vorliegt.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Andreas LakatosGND
URN:urn:nbn:de:hebis:30-13690
Referee:Horst Klein
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2005/08/10
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/07/07
Release Date:2005/08/10
Tag:Dumpingsystem; Extraktor; Katalysator; Niederenergetischer Strahltransport; negative Ionen; negative Wasserstoffionen
GND Keyword:Ionenquelle; Strahlextraktion; Extraktion; Ionentransport; Ionentemperatur; Ionenstrahl; Ionenoptik; Ionenfokussierung; Ionenbeschleuniger
HeBIS-PPN:130195863
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht