Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012

The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380K was identified during the HALO ai
The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380K was identified during the HALO aircraft mission TACTS in August and September 2012. In-situ measurements of CO, O3 and N2O during TACTS Flight 2 on the 30 August 2012 show the irreversible mixing of aged with younger (originating from the troposphere) stratospheric air masses within the Ex-UTLS. Backward trajectories calculated with the trajetory module of the CLaMS model indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. From the monsoon circulation region these air masses are quasi-isentropically transported above Θ = 380 K into the Ex-UTLS where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway has a significant impact on the Ex-UTLS during boreal summer and autumn. This leads to an intensification of the tropospheric influence on the Ex-UTLS with ∆Θ > 30 K (relative to the tropopause) within three weeks during the TACTS mission. In the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. Therefore, the study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere above Θ = 380K is of major importance for the change of the chemical composition of the Ex-UTLS from summer to autumn.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
Metadaten
Author:Stefan Müller, Peter Hoor, Ellen Gute, Bärbel Vogel, Andreas Zahn, Harald Bönisch, Timo Keber, Martina Krämer, Christian Rolf, Martin Riese, Hans Schlager, Andreas Engel
URN:urn:nbn:de:hebis:30:3-420083
URL:http://www.atmos-chem-phys-discuss.net/15/34765/2015
DOI:http://dx.doi.org/10.5194/acpd-15-34765-2015
ISSN:1680-7375
ISSN:1680-7367
Parent Title (English):Atmospheric chemistry and physics. Discussions
Publisher:European Geosciences Union
Place of publication:Katlenburg-Lindau
Document Type:Article
Language:English
Date of Publication (online):2016/11/14
Date of first Publication:2015/12/10
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2016/11/14
Volume:15
Pagenumber:48
First Page:34765
Last Page:34812
Note:
© Author(s) 2015. CC Attribution 3.0 License.
HeBIS PPN:424089211
Institutes:Geowissenschaften
Dewey Decimal Classification:550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 3.0

$Rev: 11761 $