Reconstruction of the low-mass dielectron signal in 1.23A GeV Au+Au collisions

QCD matter is expected to exist in different phases, when heated to high temperatures and getting highly compressed. Each phase could be characterized by distinct properties. A way to access extreme phases of matter in t
QCD matter is expected to exist in different phases, when heated to high temperatures and getting highly compressed. Each phase could be characterized by distinct properties. A way to access extreme phases of matter in the laboratory are heavy-ion collisions at (ultra-)relativistic energies. During the collision, the temperature and density is evolving and reaches a maximum temperature and density far beyond the ground state of matter. The matter properties depend on the incident collision energy. Typically, a collision is separated into three collisions stages, namely first chance collisions (I), hot and dense stage (II) and freeze-out stage (III). Out of those, the second one is of major interest, since the extreme states of matter are generated within. For this reason, the most prominent change of the hadrons is expected to appear there in. Those changes are caused by i.e. modification of the hadronic spectral function. However, to retrieve such information is complicated. Hadrons are strongly interacting particles and therefore, carry little information about the hot and dense stage. For that purpose, decays of hadrons (low-mass vector mesons) to e+e- pairs via a virtual photon, so-called dielectrons, are an ideal probe. Electrons and positrons do not interact strongly and transport the information about the hot and dense stage nearly undisturbed to the detector. Unfortunately, the production of dielectrons is suppressed by a branching ratio of ≈ 10^(-5) and requires a precise lepton identification. Nonetheless, previous experiments have extracted a dilepton signal and observed in the low-mass range an excess over the hadronic cocktail. Latter one is expected to be caused by thermal radiation induced by the medium. Up to now, experiments conducted dilepton measurements with a focus on larger collision energies and large collision systems. Measurements of dielectrons at collision energies of around 1-2A GeV were only conducted for small and medium size collision systems. HADES continued the systematic studies by a measurement of Au+Au collisions at 1.23A GeV.
The detection of dielectrons requires detectors that handle high data rates and specific detectors for a high purity lepton identification. In HADES, the strongest separation of electrons or positrons from the hadronic background is provided by a ring imaging Cherenkov detector (RICH). Its electron identification is based on Cherenkov photons, that are emitted in ring like patterns. In this work a new approach, using the time-of-flight information to preselect electrons and the reconstructed particle trajectory to estimate ring positions, is utilized to improve the lepton identification. The concept of the so-called backtracking algorithm will be explained and applied to e+e- identification in Au+Au collisions. The whole analysis chain comprises single lepton identification, pair reconstruction and correction for efficiency and acceptance losses. The final pair spectra will be presented in form of their invariant mass, pt, mt and helicity distributions. Subsequently, transport model calculations as well as results from the recently developed coarse-grained transport approach will be compared to the dielectron spectra. Moreover, the centrality dependence of the excess yield and true (not "blue-shifted") temperature of the fireball will be presented. The results will be put in context to measurements of lighter collisions systems and at higher energies.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Author:Patrick Sellheim
Place of publication:Frankfurt am Main
Referee:Joachim Stroth, Tetyana Galatyuk
Document Type:Doctoral Thesis
Date of Publication (online):2017/07/26
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/07/20
Release Date:2017/08/08
Pagenumber:X, 212
HeBIS PPN:415570425
Dewey Decimal Classification:530 Physik
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $