Development of the timing system for the Bunch-to-Bucket transfer between the FAIR accelerators

  • The FAIR project is aiming at providing high-energy beams of ions of all elements from hydrogen to uranium, antiprotons and rare isotopes with high intensities. The existing accelerator facility of GSI and the future FAIR facility employ a variety of circular accelerators like heavy ion synchrotrons (SIS18 and SIS100) and storage rings (ESR, CRYRING, CR and HESR) for the preparation of secondary beams and experiments. Bunches are required to be transferred into rf buckets among GSI and FAIR ring accelerators for different purposes. Without the proper transfer, the beam will be subject to various beam quality deterioration and even to beam losses. Hence, the proper bunch-to-bucket (B2B) transfer between two rings is of great importance for FAIR and is the topic, which has been investigated in this thesis. These circular accelerators of GSI and FAIR have different ratios in their circumference. For example, the circumference ratio between SIS100 and SIS18 is an integer and between SIS18 and ESR is close to an integer and between CR and HESR is far away from an integer. The ring accelerators are connected via a complicated system of beam transfer lines, targets for the secondary particle production and the high energy separators mentioned above. For FAIR, not only the primary beams are required to be transferred from one ring to another, but also the secondary beams, e.g. the antiproton or rare isotope beams produced by the antiproton (pbar) target, the fragment separator (FRS) or the superconducting fragment separator (Super-FRS). An important topic for this system of accelerators is the proper transfer of beam between the different circular accelerators. Bunches of one ring must be transferred into buckets of another ring within an upper bound time constraint (e.g. 10 ms for most FAIR use cases) and with an acceptable B2B injection center mismatch +-1 degree for most FAIR use cases). Hence, a flexible FAIR B2B transfer system is required to realize the different complex B2B transfers between the FAIR rings in the future. In the focus of the system development and of this thesis is the transfer from SIS18 to SIS100, which can be tested at GSI on the transfer from SIS18 to ESR and from ESR to CRYRING. The system is based on the existing technical basis at GSI, the low-level radio frequency (LLRF) system and the FAIR control system. It coordinates with the Machine Protection System (MPS), which protects SIS100 and subsequent accelerators and experiments from damage caused by high intensity primary beams in case of malfunctioning. Besides, it indicates the beam status and the actual beam injection time for the beam instrumentation and diagnostics. The conceptual realization of the FAIR B2B transfer system was introduced in this thesis for the first time. It achieves the most FAIR B2B transfers with a tolerable B2B injection center mismatch (e.g. +-1 degree) and within an upper bound time (e.g. 10 ms). It supports two synchronization methods, the phase shift and frequency beating methods. It is flexible to support the beam transfer between two rings with different ratios in their circumference and several B2B transfers running at the same time, e.g. the B2B transfer from SIS18 to SIS100 and at the same time the B2B transfer from ESR to CRYRING. It is capable to transfer beam of different ion species from one machine cycle to another and to transfer beams between two rings via the FRS, the pbar target and the Super-FRS. It allows various complex bucket filling pattern. In addition, it coordinates with the MPS system, which protects the SIS100 and subsequent accelerators or experiments from beam induced damage. A list of criteria for the preservation of beam qualities during the rf frequency modulation of the phase shift method was analyzed. As an example the beam reaction on three different rf frequency modulation examples were analyzed for SIS18 beams. According to the beam dynamic analysis, there is a maximum value for the rf frequency modulation. The first derivative of the rf frequency modulation must be continuous and small enough and the second derivative must be small enough. In addition to the analysis from the viewpoint of beam dynamics, two test setups were built. The first test setup was used to characterize the FAIR timing network – white rabbit network for the B2B transfer. In the second test setup, the firmware of the FAIR B2B transfer system was evaluated, which was running on the soft CPU, LatticeMico32, of the Scalable Control Unit - the FAIR standard Front End Controller. Besides, the boundary conditions of the different trigger scenarios of the SIS18 extraction and SIS100 injection kicker magnets were investigated. Finally, the application of the FAIR B2B transfer system for all FAIR use cases was demonstrated. The dissertation plays a significant important role for the realization of the FAIR B2B transfer system and the further practical application of the system to all FAIR use cases.

Download full text files

Export metadata

Metadaten
Author:Jiaoni Bai
URN:urn:nbn:de:hebis:30:3-444667
Place of publication:Frankfurt am Main
Referee:Oliver KesterORCiD, Ulrich RatzingerORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/08/25
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/08/22
Release Date:2017/10/12
Tag:bunch-to-bucket; frequency beating; phase shift; synchronization two rings
Page Number:x, 174
HeBIS-PPN:417728824
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht