Evolution of the lichen-forming fungal genus Protoparmelia

  • Introduction: The evolutionary patterns of symbiotic organisms are inferred using cophylogenetic methods. Congruent phylogenies indicate cospeciation or host-switches to closely-related hosts, whereas incongruent topologies indicate independent speciation. Recent studies suggest that coordinated speciation is a rare event, and may not occur even in the highly specialized associations. The cospeciation hypothesis was mainly tested for free-living mutualistic associations, such as plant-pollinator interactions, and host-parasitic systems but was rarely tested on obligate, mutualistic associations involving intimate physiological interactions. Symbionts with lower partner selectivity may not experience coordinated speciation due to frequent switching of partners. On the other hand, symbionts with high partner selectivity may influence each other’s evolution owing to the highly interdependent lifestyles. Symbiont association patterns are also influenced by habitat and it has been proposed that symbiotic interactions are stronger in warm regions as compared to cooler regions (also referred as latitudinal gradient of biotic specialization). This hypothesis however, has recently been challenged and it has been suggested that a gradient of biotic specialization may not exist at all. Reliable species concepts are a prerequisite for understanding the association and evolutionary patterns of symbiotic organisms. The species concepts of many groups traditionally relied on the morphological species concept, which may not be adequate for distinguishing species due to the: i) homoplasious nature of morphological characters, an due to the inability to distinguish cryptic species. Thus phylogenetic species concept along with coalescent-based species delimitation approaches, which utilize molecular data for inferring species boundaries have been used widely for resolving taxonomic relationships. Lichens are obligatory symbiotic associations consisting of a fungal partner (mycobiont) and one or more photosynthetic partners, algae, and/or cyanobacteria (photobionts). I used the lichen forming fungal genus Protoparmelia as my study system, which consists of ~25-30 previously described species inhabiting different habitats, from the arctic to the tropics. This makes Protoparmelia an ideal system to explore the association and evolutionary patterns across different macrohabitats. Objectives: The objectives of this thesis were to 1. Elucidate the phylogenetic position of Protoparmelia within Lecanorales, and infer the monophyly of Protoparmelia; 2. Understand species diversity within Protoparmelia s.str. using coalescent-based species delimitation approaches; and 3. To identify the Trebouxia species associated with Protoparmelia using phylogenetic and species delimitation approaches and to infer the association and cophylogenetic patterns Protoparmelia and Trebouxia in different macrohabitats. Results and discussion: Chapter 1: Taxonomic position of Protoparmelia In the first part of this study I explored the taxonomic position of Protoparmelia within the order Lecanorales. Overall this study included 54 taxa from four families, sequenced at five loci (178 sequences). I found Protoparmelia to be polyphyletic and sister to Parmeliaceae. Chapter 2: Multilocus phylogeny and species delimitation of Protoparmelia spp. In this part of the study, I identified and delimited the Protoparmelia species forming a monophyletic clade sister to Parmeliaceae i.e., Protoparmelia sensu stricto group, based on the multilocus phylogeny and coalescent-based species delimitation approaches. I included 18 previously described and three unidentified Protoparmelia species, which represents ~70% of the total described species, and 73 other taxa, sequenced at six loci. I found that the sensu stricto group comprised of 25 supported clades instead of 12 previously described Protoparmelia species. I tested the speciation probabilities of these 25 clades using species delimitation softwares BP&P and spedeSTEM. I found nine previously unrecognized lineages in Protoparmelia and I propose the presence of at least 23 species for Protoparmelia s.str., in contrast to the 12 described species included in the study. Chapter 3: Association and cophylogenetic patterns of Protoparmelia and its symbiotic partner Trebouxia ...

Download full text files

Export metadata

Metadaten
Author:Garima SinghORCiDGND
URN:urn:nbn:de:hebis:30:3-444917
Place of publication:Frankfurt
Referee:Imke SchmittORCiDGND, Markus PfenningerORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/04/09
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/09
Release Date:2017/09/07
Tag:cospeciation; failure to diverge; host-switch
Symbiont evolution; coevolution; cophylogeny; fungal phylogeny; macrohabitat; species delimitation; symbiont association patterns
Page Number:viii, 167
HeBIS-PPN:416297374
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht