Der Hefepilz Xanthophyllomyces dendrorhous als Produktionsplattform für die Biosynthese von Phytoen und Zeaxanthin

In dieser Arbeit wurde der Hefepilz Xanthophyllomyces dendrorhous als vielseitige biotechnologische Plattform für die Produktion von Carotinoiden verwendet. Durch genetische Modifikationen der Carotinoidbiosynthese wurde
In dieser Arbeit wurde der Hefepilz Xanthophyllomyces dendrorhous als vielseitige biotechnologische Plattform für die Produktion von Carotinoiden verwendet. Durch genetische Modifikationen der Carotinoidbiosynthese wurde ein Astaxanthin-Hochproduzent zur Akkumulation des farblosen Phytoens, das die menschliche Haut vor der schädlichen Wirkung der UV-Strahlung schützt und des gelben Zeaxanthins, das zur Förderung und Erhalt der Sehfähigkeit beiträgt, befähigt. Zur Generierung eines Phytoen-Hochproduzenten wurde das Gen crtI (Phytoen-Desaturase) inaktiviert und der Phytoengehalt durch Überexpression der Gene HMGR, crtE und crtYB gesteigert. Die Generierung eines Zeaxanthin-Hochproduzenten beinhaltete die Inaktivierung des Gens asy (Astaxanthin-Synthase) und die heterologe Expression einer bakteriellen ß-Carotin-Hydroxylase CrtZoXd. 
Die Inaktivierung der Gene erfolgte mit spezifischen Knock-Out-Konstrukten, die mittels homologer Rekombination in crtI oder asy integrierten. Nachdem die Transgene auf Vektoren mit verschiedenen Antibiotikaresistenzen kloniert wurden, wurde die Überexpression durch genomische Integration in die ribosomale DNA erreicht. Anschließend wurde die Carotinoidzusammensetzung der Zellextrakte durch Hochleistungsflüssigkeitschromatographie an einer C18-Trennsäule oder durch Dünnschichtchromatographie bestimmt. Der Knock-Out-Nachweis erfolgte mittels Polymerase-Kettenreaktion und Amplifikation der Genloci, während die Anzahl integrierter Carotinoidgene durch quantitative Real-Time-PCR bestimmt wurde. Die Kultivierungen von X. dendrorhous wurden sowohl in Schikanekolben als auch in einem 2L-Bioreaktor durchgeführt.
Im Zuge der genetischen Modifikationen konnte der Ploidiegrad des Wildtyps bestimmt werden, der bis dahin unbekannt war. Durch das Auftreten von instabilen heterozygoten Stämmen und deren Überführung zu stabilen Homozygoten wurde die Existenz eines diploiden Genoms nachgewiesen. Um die für die biotechnologische Anwendung notwendige Stabilität der Carotinoidbiosyntheseleistung zu erreichen, wurden zwei Strategien entwickelt. Hierbei erfolgte die Stabilisierung der Stämme als Folge mitotischer Rekombination nach Subkultivierung und anschließender Farbselektion oder durch Induktion des sexuellen Zyklus und Sporulation.
Der crtI-Knock-Out führte zur Akkumulation von 3,6 mg/g dw Phytoen. Anschließend wurde die Limitierung der Phytoensynthese durch crtYB-Überexpression aufgehoben und die Versorgung der Carotinoidbiosynthese mit Vorläufermolekülen durch HMGR- und crtE-Überexpression erhöht. Im Bioreaktor wurde durch die Anwendung eines dreistufigen Fed-Batch-Prozesses, der eine effiziente Glucoseverwertung  sicherstellte, mit 10,4 mg/g dw die höchste bis dato publizierte zelluläre Phytoenkonzentration im stabilisierten Hochproduzenten erreicht.
Der asy-Knock-Out führte zur Akkumulation von 4,5 mg/g dw ß-Carotin, das anschließend durch heterologe Expression der codon-optimierten ß-3,3-ß-Hydroxylase crtZoXd im Hochproduzenten zu 3,5 mg/g dw Zeaxanthin umgesetzt wurde. Zur Optimierung des Vorgehens wurden Knock-In-Konstrukte entwickelt, mit denen beide Schritte (Knock-Out und Integration von Carotinoidgenen) in nur einem molekular-biologischen Schritt durchgeführt und 94 % des in einem Wildtypstamm vorhanden ß-Carotins zu Zeaxanthin umgesetzt wurden. Die Optimierung der Wachstumsbedingungen bei der Bioreaktor-Kultivierung des stabilisierten Zeaxanthinproduzenten führte mit 10,8 mg/L zu einem 5-fach höheren Zeaxanthingehalt im Vergleich zur Schikane-Kultivierung.
Durch den Einsatz der Pentosen Arabinose und Xylose als alternative Kohlenstoffquellen wurde der Carotinoidgehalt der Phytoen- und Zeaxanthin-Hochproduzenten um 70 bzw. 92 % im Vergleich zur Glucose-Kultivierung gesteigert, wobei die Gründe für diesen Effekt in einer stärkeren Kohlenstoffverwertung und der Hemmwirkung von Glucose vermutet wurden. Aus verschiedenen pflanzlichen Abfallstoffen kann Xylose durch Hydrolyse freigesetzt werden, deren Nutzung zum Aufbau einer nachhaltigen und kostengünstigen biotechnologischen Carotinoidproduktion beitragen kann.
Darüber hinaus wurden multioxigenierte Zeaxanthinderivate, von denen eine positive Wirkung auf die menschliche Gesundheit vermutet wird, durch kombinatorische Biosynthese erhalten. Durch die schrittweise Integration der Gene crtZoXd, crtG (ß-2,2-Hydroxylase) und bkt (ß-4,4-Ketolase) in eine ß-Carotinmutante wurde die Biosynthese von Zeaxanthin, Nostoxanthin und schließlich von 4-Keto-Nostoxanthin und 4,4-Diketo-Nostoxanthin erreicht. Anschließend erfolgte die chemische Reduktion zu den neuartigen Carotinoiden 4-Hydroxy-Nostoxanthin und 4,4-Dihydroxy-Nostoxanthin und der zweifelsfreie Nachweis aller vier Carotinoide anhand der mittels Massenspektrometrie bestimmten Molekülmassen und Fragmentierungsmuster.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Hendrik Pollmann
URN:urn:nbn:de:hebis:30:3-445133
Place of publication:Frankfurt am Main
Referee:Gerhard Sandmann, Claudia Büchel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/09/14
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/09/08
Release Date:2017/09/21
Tag:Carotinoide; Phytoen; Zeaxanthin
Metabolic Engineering
Pagenumber:XVIII, 132
HeBIS PPN:416816592
Institutes:Biowissenschaften
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $