Measuring information processing in neural data: The application of transfer entropy in neuroscience

It is a common notion in neuroscience research that the brain and neural systems in general "perform computations" to generate their complex, everyday behavior (Schnitzer, 2002). Understanding these computations is thus 
It is a common notion in neuroscience research that the brain and neural systems in general "perform computations" to generate their complex, everyday behavior (Schnitzer, 2002). Understanding these computations is thus an important step in understanding neural systems as a whole (Carandini, 2012;Clark, 2013; Schnitzer, 2002; de-Wit, 2016). It has been proposed that one way to analyze these computations is by quantifying basic information processing operations necessary for computation, namely the transfer, storage, and modification of information (Langton, 1990; Mitchell, 2011; Mitchell, 1993;Wibral, 2015). A framework for the analysis of these operations has been emerging (Lizier2010thesis), using measures from information theory (Shannon, 1948) to analyze computation in arbitrary information processing systems (e.g., Lizier, 2012b). Of these measures transfer entropy (TE) (Schreiber2000), a measure of information transfer, is the most widely used in neuroscience today (e.g., Vicente, 2011; Wibral, 2011; Gourevitch, 2007; Vakorin, 2010; Besserve, 2010; Lizier, 2011; Richter, 2016; Huang, 2015; Rivolta, 2015; Roux, 2013). Yet, despite this popularity, open theoretical and practical problems in the application of TE remain (e.g., Vicente, 2011; Wibral, 2014a). The present work addresses some of the most prominent of these methodological problems in three studies.
The first study presents an efficient implementation for the estimation of TE from non-stationary data. The statistical properties of non-stationary data are not invariant over time such that TE can not be easily estimated from these observations. Instead, necessary observations can be collected over an ensemble of data, i.e., observations of physical or temporal replications of the same process (Gomez-Herrero, 2010). The latter approach is computationally more demanding than the estimation from observations over time. The present study demonstrates how to handles this increased computational demand by presenting a highly-parallel implementation of the estimator using graphics processing units.
The second study addresses the problem of estimating bivariate TE from multivariate data. Neuroscience research often investigates interactions between more than two (sub-)systems. It is common to analyze these interactions by iteratively estimating TE between pairs of variables, because a fully multivariate approach to TE-estimation is computationally intractable (Lizier, 2012a; Das, 2008; Welch, 1982). Yet, the estimation of bivariate TE from multivariate data may yield spurious, false-positive results (Lizier, 2012a;Kaminski, 2001; Blinowska, 2004). The present study proposes that such spurious links can be identified by characteristic coupling-motifs and the timings of their information transfer delays in networks of bivariate TE-estimates. The study presents a graph-algorithm that detects these coupling motifs and marks potentially spurious links. The algorithm thus partially corrects for spurious results due to multivariate effects and yields a more conservative approximation of the true network of multivariate information transfer.
The third study investigates the TE between pre-frontal and primary visual cortical areas of two ferrets under different levels of anesthesia. Additionally, the study investigates local information processing in source and target of the TE by estimating information storage (Lizier, 2012) and signal entropy. Results of this study indicate an alternative explanation for the commonly observed reduction in TE under anesthesia (Imas, 2005; Ku, 2011; Lee, 2013; Jordan, 2013; Untergehrer, 2014), which is often explained by changes in the underlying coupling between areas. Instead, the present study proposes that reduced TE may be due to a reduction in information generation measured by signal entropy in the source of TE. The study thus demonstrates how interpreting changes in TE as evidence for changes in causal coupling may lead to erroneous conclusions. The study further discusses current bast-practice in the estimation of TE, namely the use of state-of-the-art estimators over approximative methods and the use of optimization procedures for estimation parameters over the use of ad-hoc choices. It is demonstrated how not following this best-practice may lead to over- or under-estimation of TE or failure to detect TE altogether.
In summary, the present work proposes an implementation for the efficient estimation of TE from non-stationary data, it presents a correction for spurious effects in bivariate TE-estimation from multivariate data, and it presents current best-practice in the estimation and interpretation of TE. Taken together, the work presents solutions to some of the most pressing problems of the estimation of TE in neuroscience, improving the robust estimation of TE as a measure of information transfer in neural systems.
show moreshow less

Author:Patricia Wollstadt
Place of publication:Frankfurt am Main
Referee:Matthias Kaschube, Michael Wibral
Advisor:Michael Wibral
Document Type:Doctoral Thesis
Date of Publication (online):2018/02/05
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/01/25
Release Date:2018/02/08
Tag:information processing; information transfer; neuroscience; transfer entropy
HeBIS PPN:425538877
Institutes:Informatik und Mathematik
Dewey Decimal Classification:004 Datenverarbeitung; Informatik
510 Mathematik
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $