Etablierung eines ArgC-analogen Verdaues für Bottom-Up-Ansätze in der Proteomforschung

  • Massenspektrometrie-basierte Proteomuntersuchungen erfolgen auch heute überwiegend nach dem sogenannten Bottom-Up-Ansatz, d.h. die Identifizierung von Proteinen erfolgt auf der Basis von Peptiden, die chromatographisch gut voneinander getrennt werden können und massenspektrometrisch leichter zu analysieren sind als Proteine. Nach Identifikation der Peptide kann rekonstruiert werden, welche Proteine ursprünglich in der Probe vorgelegen haben. Zentraler Arbeitsschritt der Probenvorbereitung ist daher die Zerlegung des Proteins, die entweder chemisch oder - wie in den meisten Fällen – enzymatisch erfolgt. Trypsin ist das mit Abstand am häufigsten genutzte Enzym, da es eine hohe Schnittspezifität aufweist und sehr effizient ist. Der Trypsin-Verdau ist darüber hinaus sehr robust, d.h. er zeigt eine hohe Toleranz gegenüber Verunreinigungen, und zudem werden Peptide erzeugt, die sowohl gute Ionisations- als auch gute Fragmentierungseigenschafen aufweisen. Die durch Trypsin gebildeten Peptide enthalten neben dem basischen N-Terminus eine weitere basische Aminosäure am C-Terminus, so dass sie leicht zumindest doppelt-geladene Ionen bilden können und sehr häufig aussagekräftige C-terminale Fragmentioneserien liefern. Neben den zahlreichen Vorteilen gibt es allerdings auch Nachteile. So können nach einem tryptischen Verdau in Abhängigkeit von der Verteilung der Schnittstellen Peptide entstehen, die entweder zu klein sind, um eine verlässliche Zuordnung zu einem Protein zu erlauben oder die zu groß sind für den Massenbereich des gewählten Massenanalysators. Eine vielversprechende Alternative zu Trypsin wäre ArgC, welches C-Terminal zu Argininen schneidet und somit im Durchschnitt größere Peptide mit Ionisations- und Fragmentierungseigenschaften ähnlich zu tryptischen Peptiden erzeugt. Das Enzym ArgC weist jedoch nur eine geringe Schnittspezifität auf und sein Trypsin-ähnliches Verhalten – also das Schneiden auch hinter Lysin - wurde öfters beobachtet und wird auch vom Hersteller angegeben. Ziel dieser Arbeit war die Entwicklung einer Verdaumethode, die Peptide erzeugt, die ausschließlich auf Argininen enden. Das Resultat der zu entwickelnden Verdaumethode sollte somit dem eines idealen enzymatichen ArgC-Verdaues entsprechen. Realisiert wurde der ArgC-ähnliche-Verdau durch den Einsatz von Trypsin, dessen enzymatischer Schnitt durch die chemische Derivatizierung der Substrat-Lysine auf Arginine reduziert wurde. Neben dem weiteren Einsatz von Trypsin sollte dieser "Quasi-Arg-C-Verdau" weitere systematische Vorteile für Proteomanalysen realisieren: Zum Ersten sollte die Anzahl von Fehlschnitt-Peptiden, die sich bei Trypsin insbesondere an Lysinen mit saurer chemischer Umgebung ergeben, reduziert werden, zum Zweiten sollten die Arg-C-Peptide sowohl durch ihre gewachsende Größe, als auch durch das mit dem C-terminalen Arginin verbesserte Fragmentierungsverhalten höhere Score-Werte bei der bioninformatischen Auswertung der MS-Daten ergeben. Im ersten Teil wurden zunächst bioinformatische Werkzeuge entwickelt, die MALDI-MS-Dateien automatisiert prozessierten. Die entwickelten Programme umfassen die Identifizierung und relative Quantifizierung von Proteinen aus diesen Dateien. Des Weiteren wurde ein Programm zur Analyse von MALDI-ISD-Dateien entwickelt. Automatisierte Auswertungen gelangen durch die Erstellung von Workflows in der Datenanalyseplattform KNIME. Diese Workflows kombinieren in Python geschriebene Skripte und Funktionalitäten frei verfügbarer Programme wie "MSConvert" und "mMass". Nach Erstellung der bioinformatischen Werkzeuge wurde die Methodenentwicklung zur Modifizierung der Lysine für verschiedene Reagenzien durchgeführt. Die Auswahl fiel auf vier Substanzen, von denen bekannt ist, dass sie unter milden Reaktionsbedingung im quantitativen Ausmaß mit Aminogruppen reagieren. Diese waren Sulfo-NHS-Acetat, Propionsäureanhydrid, Diethylpyrocarbonat und die reduktive Methylierung mit Formaldehyd und Picolin-Boran. Die Reaktionsbedingungen mussten zunächst für Proteine optimiert werden, da die publizierten Protokolle hauptsächlich zur Derivatizierung von Peptiden verwendet worden waren. Anschließend wurden die optimierten Protokolle für eine Protein- und Proteomprobe eingesetzt und die Resultate miteinander verglichen. Die Untersuchungen führten zu dem Ergebnis, dass sowohl auf Protein- als auch auf Proteomebene die Propionylierung des Lysins die besten Resultaten zeigte. Insbesondere ist hervorzuheben, dass alle ArgC-ähnlichen Ansätze unabhängig vom eingesetzten Reagenz zu besseren Ergebnissen in jeder der Untersuchungen führte als der klassische enzymatische ArgC-Verdau. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Vahid Golghalyani
URN:urn:nbn:de:hebis:30:3-480106
Place of publication:Frankfurt am Main
Referee:Michael KarasGND, Rolf MarschalekORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2018/10/31
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/10/11
Release Date:2018/11/08
Page Number:xix, 157
HeBIS-PPN:438577914
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht