Ionenerzeugung mit Hochdruck-Mikroentladungen

Die im Rahmen dieser Diplomarbeit entwickelte sehr einfach und kompakt aufgebaute Mikro-Ionenquelle basiert auf einer Mikro-Struktur-Elektrode (MSE). Mit dieser lässt sich bei einer Betriebsspannung von wenigen 100 Volt 
Die im Rahmen dieser Diplomarbeit entwickelte sehr einfach und kompakt aufgebaute Mikro-Ionenquelle basiert auf einer Mikro-Struktur-Elektrode (MSE). Mit dieser lässt sich bei einer Betriebsspannung von wenigen 100 Volt eine stabile Hochdruck-Glimmentladung erzeugen. Das Betriebsgas durchströmt die MSE-Pore und expandiert anschließend adiabatisch ins Vakuum, wobei die interne Temperatur des Strahls herabgesetzt wird. Der Vordruck des Gases kann bei dem vorhandenen Aufbau zwischen wenigen 100 hPa und etwa 0,5 MPa liegen. Mit einem ähnlichen Aufbau, jedoch mit deutlich größerer Saugleistung der Vakuumpumpen, konnte selbst bei Vordrücken über 3 MPa noch eine Entladung mit gleichen Eigenschaften betrieben werden. Es wurde gezeigt, dass Ionen durch Diffusion sowie die starke Gasströmung in der MSE-Pore aus dem Plasma extrahiert werden. Eine zusätzliche Beschleunigungsspannung zeigt einen deutlichen Einfluss auf die Formierung eines Ionenstrahls. Es kann ein schmaler Strahl mit maximal einigen mm Durchmesser erzeugt werden. Die Mikroentladung lässt sich mit zahlreichen Gasen betreiben. Erfolgreich getestet wurden Helium, Neon, Argon, Stickstoff und normale Luft sowie Mischungen davon. Auch eine Beimischung von Wasserstoff ist möglich und eröffnet die Erzeugung beispielsweise von molekularen HeH+-Ionen. Zur Extraktion der Ionen kann eine Beschleunigungsspannung von bis zu 5 kV angelegt werden. Der Ionenstrahl wird über ein differenzielles Pumpsystem durch einen Skimmer ins Hochvakuum überführt und dort analysiert. Es entstehen sowohl einfach als auch doppelt geladene Ionen. Bei einem Entladestrom von wenigen mA lässt sich ein Strom von bis zu 3 mA (ohne Sekundärelektronen-Unterdrückung) auf dem Skimmer messen. Die Stromdichte des Strahls ist jedoch zu hoch, um mit der verwendeten einfachen Diodenextraktion den gesamten Strom durch den Skimmer zu transportieren. Nur ein Anteil von ca. 1/50 bis 1/30 des gesamten Ionenstroms kann den Skimmer passieren. Hinter dem Skimmer liegt der Strom zwischen einigen 100 nA und einigen 10 µA. Durch Optimierung der Extraktionsgeometrie sollte hier eine deutliche Erhöhung erreicht werden. Im normalen Betrieb wird mit einem Entladestrom von 1-2 mA gearbeitet. Zum einen ist hier bereits, wie eben erwähnt, die maximale Stromdichte erreicht, die durch den Skimmer transportiert werden kann. Zudem sinkt mit steigendem Strom die Haltbarkeit der MSE-Elektroden aufgrund verstärkten Sputterns erheblich, auch dies spricht gegen einen Betrieb mit hohem Plasmastrom. Der maximale bisher erreichte Entladestrom in einem MSE-Plasma beträgt 50 mA. Der Elektrodenabtrag begrenzt momentan die Betriebsdauer einer MSE auf wenige Stunden. Durch die Einführung von Wolfram-Elektroden konnte bereits eine deutliche Steigerung der Haltbarkeit erreicht werden, für eine sinnvolle Anwendung der Ionenquelle muss jedoch noch eine Weiterentwicklung der MSE stattfinden. Dass sich der Kühleffekt aufgrund der adiabatischen Expansion auf im Plasma erzeugte metastabile He*-Atome auswirkt, wurde im Rahmen einer zweiten Diplomarbeit zum Thema Plasmajet gezeigt. Mit einem Aufbau nach demselben Prinzip, jedoch ohne Extraktionsspannung, wurde eine Apparatur zur Erzeugung eines spinpolarisierten metastabilen Helium-Targets realisiert [Jahn2002]. Es wurde gezeigt, dass zum einen der Energieeintrag ins Gas durch die Entladung sehr gering ist. Es handelt sich also beim MSE-Hochdruck- Plasma tatsächlich um eine nichtthermische Entladung. Zum anderen konnte in ergänzenden Flugzeitmessungen gezeigt werden, dass die Geschwindigkeitsverteilung der Metastabilen der eines herkömmlichen Gasjets entspricht. Der Kühleffekt wirkt also auf die Metastabilen genauso wie auf Gasatome im Grundzustand, ohne dabei die Metastabilen abzuregen. Um die Geschwindigkeitsverteilung der Ionen zu untersuchen, ist die verwendete Methode jedoch nicht ohne weiteres anwendbar. Aufgrund der Coulomb- Abstoßung der Ionen weist der unbeschleunigte Ionenstrahl eine starke Divergenz auf. Die Intensität des Ionensignals auf dem Detektor ist somit äußerst gering, was eine Flugzeitmessung kaum sinnvoll erscheinen lässt. Mit den vorhandenen Diagnosemethoden konnte daher ein Kühleffekt aufgrund der adiabatischen Expansion auf die Ionen nicht verifiziert werden. Mit der Mikro-Ionenquelle wurde jedoch gezeigt, dass es eine Wechselwirkung zwischen Ionen und Gasjet gibt: versucht man, die Ionen mit einer Extraktionsspannung zu beschleunigen, so erfahren sie aufgrund zahlreicher Stöße mit den langsameren Gasteilchen einen massiven Energieverlust. Man erhält einen Ionenstrahl mit stark verbreiterter Energieverteilung. Dies zeigt, dass sich die Ionen im Bereich hoher Dichte mit dem Jet bewegen. Stört man die Expansion, indem man die Ionen mittels der Beschleunigungsspannung aus dem Jet herausreißt, so erfahren sie durch die Wechselwirkung mit den Atomen im Jet einen erheblichen Energieverlust. Es ist daher zu vermuten, dass auch die Ionen gekühlt werden. Misst man mit Hilfe eines Quadrupol-Massenspektrometers das Spektrum von nicht beschleunigten Ionen, so erhält man scharfe Peaks, es tritt also kein Energieverlust auf. Zur Messung des Geschwindigkeitsprofils eignet sich diese Methode jedoch nicht. Es ist daher sinnvoll, in Zukunft mit einer entsprechend angepassten Apparatur auch für die Ionen eine Flugzeitmessung durchzuführen. Die schlechte Energieschärfe des Ionenstrahls ist ein erheblicher Nachteil für viele Anwendungen. Für zukünftige Weiterentwicklungen der Mikro- Ionenquelle muss eine geeignetere Extraktionsgeometrie gefunden werden. Eine Möglichkeit wäre, die Ionen mit dem Gasjet mitfliegen zu lassen und in größerem Abstand zu beschleunigen, wenn die Dichte im Jet stark abgefallen ist. In diesem Fall muss man jedoch eine sinnvolle Lösung für Größe und Position des Skimmers finden oder klären, ob auf einen Skimmer vollständig verzichtet werden kann. Es könnte bei dieser Lösung hilfreich sein, die Raumladungsdichte im Ionenstrahl durch Überlagerung mit einem Elektronenstrahl zu reduzieren und so die Divergenz des Strahls zu verringern. Man könnte die Divergenz auch verringern, indem man den Ionenstrahl durch ein Magnetfeld einschließt. Hierbei provoziert man aber vermutlich durch die Spiralbewegung der Ionen zusätzliche Stöße mit dem Jet. Denkbar wäre auch, die Ionen mit Hilfe elektrischer Felder aus dem Gasjet herauszulenken und anschließend zu beschleunigen. Bekommt man das Problem des Energieverlusts in den Griff, so erhält man eine leistungsfähige Ionenquelle, die ein großes Potential für Anwendungen bietet. Der kompakte Aufbau ermöglicht einen Verzicht auf Wechselspannungen, Mikrowellenstrahlung sowie magnetischen Einschluss. Da es sich um eine Gleichspannungsentladung mit wenigen Watt Leistung handelt, ist ein sehr energieeffizienter Betrieb möglich. Die gemessenen Ionenströme zeigen, dass eine Hochdruckentladung auf der Basis von MSE eine hohe Ionisationseffizienz aufweist. Der hohe Arbeitsdruck ermöglicht eine große Ausbeute an molekularen Ionen. Gelingt es, den Kühleffekt des Gasjets auf die Ionen zu nutzen, so erzeugt man einen Ionenstrahl mit sehr niedriger interner Temperatur, der für atomphysikalische Experimente interessant ist. Zudem ließe sich ein solcher Strahl auf sehr kleine Durchmesser fokussieren, was eine hohe Genauigkeit etwa bei Oberflächenmodifikationen erlaubt. Die Untersuchungen im Bereich Gasanalytik haben gezeigt, dass Hochdruckentladungen hier eine Alternative zu den herkömmlichen, auf Niederdruckentladungen basierenden, Messverfahren darstellen. Die sehr guten Nachweisgrenzen für Freon in Kombination mit dem einfachen und kompakten Aufbau sprechen für die Hochdruckentladung. Jedoch muss für eine sinnvolle Nutzung die Haltbarkeit der MSE noch deutlich erhöht werden.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Sven Schößler
URN:urn:nbn:de:hebis:30-5738
Document Type:Diplom Thesis
Language:German
Year of Completion:2002
Year of first Publication:2002
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2002/09/30
Release Date:2005/04/11
Last Page:89
HeBIS PPN:12873387X
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $