Analyse von digitalisierten Germanium-Detektorsignalen

In der vorliegenden Arbeit wurden die Signalformen eines großvolumigen Germanium- Detektors analysiert, mit dem Ziel, den primären Wechselwirkungsort des Photons im Detektor zu bestimmen. Die experimentellen Voraussetzun
In der vorliegenden Arbeit wurden die Signalformen eines großvolumigen Germanium- Detektors analysiert, mit dem Ziel, den primären Wechselwirkungsort des Photons im Detektor zu bestimmen. Die experimentellen Voraussetzungen dazu bestehen erst seit der Entwicklung schneller Analog-Digital-Wandler, mit denen man in der Lage ist, Detektorsignale direkt nach dem Vorverstärker zu digitalisieren und somit einer genauen Analyse zu unterziehen. Im experimentellen Teil der Arbeit wurden dazu die von einem großvolumigen p-Typ HPGe-Detektor der "koaxial einseitig geschlossenen" Bauart gelieferten Signale abgetastet und digitalisiert. Synchron dazu wurde die Energie mit Analogelektronik gemessen. Die Messungen wurden für verschiedene Energien in Abhängigkeit vom Auftreffort des g-Quants auf dem Detektor durchgeführt. Dabei wurde der Detektor mit g- Quellen im Energiebereich bis 700keV an verschiedenen Positionen kollimiert bestrahlt. Zu den Messungen wurden Simulationsrechnungen durchgeführt, die sich in zwei Schritte gliederten. Im ersten Schritt wurden mittels des Monte-Carlo-Simulationsprogramms GEANT die Wechselwirkungsorte und die dort deponierten Energien eines g-Quants in einem Germanium-Detektor ermittelt. Im zweiten Schritt wurden daraus, unter Berücksichtigung der Detektorgeometrie und des dadurch vorgegebenen elektrischen Feldes, die Pulsformen berechnet. Aus der Anpassung der Rechnungen an die experimentellen Daten konnte über die Variation des einzigen freien Parameters der Ladungsträgerkonzentration, eine sehr gute Übereinstimmung der Anstiegszeitenverteilungen erzielt werden. Die Ladungsträgerkonzentration ließ sich damit mit einer Genauigkeit von 33% bestimmen. Durch eine Analyse der gemessenen digitalisierten Pulsformen konnte der Einstrahlort mit einer Wahrscheinlichkeit von 75,20% bestimmt werden. Dazu ist nur die Messung zweier Zeiten, der Zeit zwischen 10% und 30% der Pulshöhe und der Zeit zwischen 10% und 90% der Pulshöhe, notwendig. Die Ortsauflösung variierte dabei zwischen 4,1mm und 7,5mm. Mit Hilfe der Simulation konnten die Detektorbereiche identifiziert werden, für die eine eindeutige Zuordnung der Pulse zum Einstrahlort gelingt. Darauf aufbauend bietet die Simulation die Möglichkeit, neue Detektorgeometrien im Hinblick auf ihre Eigenschaften zur Bestimmung des Einstrahlortes zu entwickeln. Durch die Bestimmung des Einstrahlortes eines g-Quants auf dem Detektor läßt sich eine Dopplerkorrektur bei der Energiemessung von im Flug emittierten g-Quanten durchführen, die in einer deutlich verbesserten Energieauflösung resultiert.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Ingo Peter
URN:urn:nbn:de:hebis:30-5588
URL:http://www-gsi-vms.gsi.de/eb/html
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Advisor:Thomas Elze
Document Type:Diplom Thesis
Language:German
Year of Completion:1994
Year of first Publication:1994
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Release Date:2005/04/11
Pagenumber:40
HeBIS PPN:128257733
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $