Climate modeling over the Mediterranean Sea: Impact of atmosphere-ocean coupling and atmospheric grid resolution on sea surface heat fluxes, medicanes, and Vb-cyclones

  • Air-sea feedbacks between the Mediterranean Sea and the atmosphere on various temporal and spatial scales play a major role in the Mediterranean regional climate system and beyond. The Mediterranean Sea is a source of moisture due to excess evaporation and, on a long-term average, is associated with a warming of the lower atmosphere in contact with the sea surface due to heat loss at the air-sea interface. The complex air-sea interactions and feedbacks in the Mediterranean basin strongly modulate the sea surface fluxes and favor several cyclogenetic activities under certain meteorological conditions. Examples of such cyclonic activities are medicanes (Mediterranean hurricanes) and Vb-cyclones. Medicanes are mesoscale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones, while Vb-cyclones are extra-tropical cyclones, that propagate from the Western Mediterranean Sea and travel across the Eastern European Alps into the Central European region. Extremely strong winds and heavy precipitation associated with these cyclones can lead to severe destruction and flooding. Changes in the intensity and frequency of these cyclones are also projected under changing future climate conditions, where the Mediterranean region has been identified as a hotspot in terms of rising temperatures. The development of high-resolution regional climate models (RCMs) has progressed our understanding of the processes characterizing the Mediterranean climate. However, large uncertainties still exist regarding the estimates of air-sea fluxes, which, in turn, affect the simulation of the Mediterranean climate. Several factors can be attributed to such discrepancies, such as data quality, temporal and spatial resolution, and the misrepresentation of physical processes. To overcome some of these inconsistencies and deficiencies of the existing climate simulations, a new high-resolution atmosphere-ocean regional coupled model (AORCM) has been developed to simulate the air-sea feedback mechanisms. This coupled model incorporates the coupling of RCM COSMO-CLM (CCLM) and the regional ocean model NEMO-MED12 for the Mediterranean Sea (MED) as well as NEMO-NORDIC for the North- and Baltic Sea (NORDIC). Several experiments were performed using both the coupled and uncoupled models to investigate the impact of air-sea interactions and feedbacks on sea surface heat fluxes, wind speed, and on the formation of Mediterranean cyclones (i.e., medicanes and Vb-cyclones). These experiments were performed using different horizontal atmospheric grid resolutions to analyze the effect of resolution on sea surface heat fluxes, wind speed, and the development of medicanes. The results of the present study indicate that a finer atmospheric grid resolution ([is as appreciated as]9 vs. [is as appreciated as]50 km) improved the wind speed simulations (particularly near coastal areas) and subsequently improved the simulations of the turbulent heat fluxes. Both parameters were better simulated in the coupled simulations than in the uncoupled simulations, but coupling introduced a warm SST bias in winter. Radiation fluxes were slightly better represented in coarse-grid simulations than in fine-grid simulations. However, the higher-resolution coupled model could reproduce the observed net outgoing total surface heat flux over the Mediterranean Sea. In addition to that sub diurnal SST variations have a strong effect on sub-daily heat fluxes and wind speed but minor effects at longer timescales. Regarding the impact of atmospheric grid resolution ([is as appreciated as]50, 25, and [is as appreciated as]9 km) and ocean coupling on medicanes, it was detected that the coupled model with a finer atmospheric grid ([is as appreciated as]9 km) was able to not only reproduce most medicane events, but also improved the track length, warm core, and wind speed compared to the uncoupled model. The coupled model with the coarse-grid ([is as appreciated as]50 and [is as appreciated as]25 km) did not show any improvement in simulating medicanes compared to the uncoupled model. The spectral nudging technique, applied on the wind components above 850 hPa in the interior domain to keep large-scale circulation close to the driving data (i.e., ERAInterim reanalysis), improved the accuracy of the times and locations of generated medicanes, but no improvement was found in the track length and intensity. Concerning the role of the Mediterranean Sea coupling on Vb cyclones, the investigation showed that atmosphere-ocean coupling had an overall positive impact, although with a strong case-by-case variation, on the trajectories and intensity of Vb-cyclones as a result of the variation in moisture source for each event. In general, all model configurations could replicate Vbcyclones, their trajectories, and associated precipitation fields. The average structure of the precipitation field was best represented in the coupled simulations. Coupling of the North- and Baltic Seas also showed an improvement in some of the simulated Vb-cyclones. The atmosphere-ocean coupling showed an overall positive impact on the simulation of sea surface heat fluxes and Mediterranean cyclones (medicanes and Vb-cyclones). Moreover, the representation of sea surface heat fluxes, wind speed, and medicane features was more realistic when using a finer atmospheric grid resolution (less than 10 km). The present study suggests that the combination of a finer atmospheric grid resolution together with atmosphere-ocean coupling is advantageous in simulating the Mediterranean climate system.

Download full text files

Export metadata

Metadaten
Author:Naveed Akhtar
URN:urn:nbn:de:hebis:30:3-493451
Place of publication:Frankfurt am Main
Referee:Bodo AhrensORCiDGND, Stefan Hagemann
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/03/14
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/12/02
Release Date:2019/03/29
Page Number:xviii, 118
Note:
Mathematisches Zeichen für "wird genauso geschätzt wie" kann technisch in der Zusammenfassung nicht korrekt wiedergegeben werden
HeBIS-PPN:447028855
Institutes:Geowissenschaften / Geographie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht