Palaeoenvironmental response of mid-latitudinal wetlands to PETM climate change (Schöningen lignite deposits, Germany)

The Paleocene-Eocene Thermal Maximum (PETM) offers insight into massive short-term carbon cycle perturbations that caused significant warming during a high-pCO2 world, affecting both marine and terrestrial ecosystems. PE
The Paleocene-Eocene Thermal Maximum (PETM) offers insight into massive short-term carbon cycle perturbations that caused significant warming during a high-pCO2 world, affecting both marine and terrestrial ecosystems. PETM records from the marine-terrestrial interface (e.g. estuarine swamps and mire deposits) are, therefore, of great interest as their present-day counterparts are highly vulnerable to future climate and sea level change. Here, we assess paleoenvironmental changes of mid-latitudinal Late Paleocene-Early Eocene peat mire records along the paleo-North Sea coast. We provide carbon isotope data of bulk organic matter (δ13CTOC), organic carbon content (%TOC), and palynological data from an extensive peat mire deposited at a mid-latitudinal (ca. 41 °N) coastal site (Schöningen, Germany). The δ13CTOC data show a carbon isotope excursion (CIE) of −1.7 ‰ coeval with a conspicuous Apectodinium acme, calling for the presence of the PETM in this coastal section. Due to the exceptionally large stratigraphic thickness of the PETM at Schöningen (10 m of section) we established a detailed palynological record that indicates only minor changes in paleovegetation leading to and during the PETM. Instead, paleovegetation changes mostly follow natural successions in response to changes along the marine-terrestrial interface. Compared to other available peat mire records (Cobham, UK; Vasterival, France) it appears that wetland deposits around the Paleogene North Sea have a typical CIE magnitude of ca. −1.3 ‰ in δ13CTOC. Moreover, the Schöningen record shares major characteristics with the Cobham Lignite, including evidence for increased fire activity prior to the PETM, minor PETM-related plant species changes, a reduced CIE in δ13CTOC, and drowning of the mire (marine ingressions) during much of the PETM. This suggests that paleoenvironmental conditions during the Late Paleocene-Early Eocene, including the PETM, consistently affected major segments of the paleo-North Sea coast.
show moreshow less

Metadaten
Author:Katharina Methner, Olaf Lenz, Walter Riegel, Volker Wilde, Andreas Mulch
URN:urn:nbn:de:hebis:30:3-499519
DOI:http://dx.doi.org/10.5194/cp-2019-20
ISSN:1814-9340
Parent Title (English):Climate of the past discussions
Publisher:European Geosciences Union
Place of publication:Katlenburg-Lindau
Document Type:Article
Language:English
Year of Completion:2019
Date of first Publication:2019/02/14
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2019/04/11
Volume:2019
Pagenumber:23
First Page:1
Last Page:23
Note:
© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. 
HeBIS PPN:452461987
Institutes:Geowissenschaften
Senckenbergische Naturforschende Gesellschaft
Biodiversität und Klima Forschungszentrum (BiK-F)
Dewey Decimal Classification:550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0

$Rev: 11761 $