Transverse momentum spectra and cross sections of charged particles in pp collisions measured with ALICE

The production cross section and the transverse momentum distribution of charged particles is measured in pp collisions at √s = 2.76 TeV, 5.02 TeV, 7 TeV and 13 TeV, as well as for Pb-Pb collision at √s_NN = 5.02 TeV and
The production cross section and the transverse momentum distribution of charged particles is measured in pp collisions at √s = 2.76 TeV, 5.02 TeV, 7 TeV and 13 TeV, as well as for Pb-Pb collision at √s_NN = 5.02 TeV and Xe-Xe at √s_NN = 5.44 TeV in ALICE at the LHC. The measurement is performed in the transverse momentum region of 0.15 < p_T < 50 GeV/c and in the pseudorapidity range of |η| < 0.8. The precision of the measurement has been substantially enhanced as a result of the improved corrections, by taking into account a more realistic particle composition in the MC simulations. As a result, the systematic uncertainties have been reduced by more than a factor two in all systems and energies.
The average transverse momentum <p_T> results show a faster-than-linear increase with the center-of-mass energy and follow a similar trend with respect to previous measurements. The analysis of the p_T spectra in multiplicity intervals show a weak center-of-mass energy dependence when they are compared to their respective inelastic (INEL) pp measurement. The average multiplicity as a function of the collision energy shows a quadratic trend, and the comparison with other ALICE multiplicity measurements exhibits a remarkable agreement, within uncertainties.
The transverse momentum spectra in pp collisions are compared to state-of-the-art MC simulations, EPOS LHC and PYTHIA 8 event generators; none of them is able to reproduce the distributions over the full p_T range. 
The differential cross section in pp collisions is an essential observable for the study of the Quark Gluon Plasma (QGP) created in ultra-relativistic heavy-ion collisions. The absence of a medium formation in pp collisions serves as an essential baseline for studies of particle production and suppression due to parton energy-loss in the QGP. Since pp collisions at √s = 5.44 TeV were not measured by ALICE, the pp reference at this energy was constructed by using a power law interpolation between the s = 5.02 TeV and 7 TeV data. The pp results are compared to the particle production in Pb-Pb collisions at √s_NN = 5.02 TeV and Xe-Xe collisions at √s_NN = 5.44 TeV. 
The nuclear modification factor R_AA for Pb-Pb and Xe-Xe collisions was calculated and a strong suppression of high-p_T particles is observed in central collisions. The R AA in different systems allows for a differential study of the parton energy loss in the QGP. The comparison of the R AA in multiplicity intervals between the two systems provide insights into the path length dependence of a parton that propagates in the medium.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Edgar Pérez Lezama
URN:urn:nbn:de:hebis:30:3-507345
Place of publication:Frankfurt am Main
Referee:Alberica Toia, Henner Büsching
Advisor:Alberica Toia
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/03/07
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/06/13
Release Date:2019/07/11
Pagenumber:131
HeBIS PPN:450683494
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $