Isolation and structural elucidation of novel natural products with pharmaceutical potential

In the 'Golden Age of Antibiotics', between 1940 and 1970, the global pharmaceutical companies discovered many antibiotics, such as cephalosporins, tetracyclines, aminoglycosides, glycopeptides, etc., as well as antifung
In the 'Golden Age of Antibiotics', between 1940 and 1970, the global pharmaceutical companies discovered many antibiotics, such as cephalosporins, tetracyclines, aminoglycosides, glycopeptides, etc., as well as antifungal and antiparisitic agents. Due to several reasons, e.g. the steady re-discovery of already known NPs and the associated high costs, many pharmaceutical companies have significantly scaled back or totally abandoned their NP discovery programs since the late 20th century. Instead those companies started to focus on drug discovery based on combinatorial synthesis and thereby on the creation of enormous synthetic libraries containing small molecules. Unfortunately, this synthetic approach dealing with the optimization of existing NP or antibiotic has its limitations. As a result, leading pharmaceutical companies are re-conducting NPs research to discover new antimicrobials for the upcoming antimicrobial resistance threat. The Natural Product Center of Excellence, a collaboration between Sanofi-Aventis and Fraunhofer IME, is advancing in this context the discovery and development of novel antimicrobial agents for the treatment of infectious diseases through the testing of Sanofi's microbial extract library and strain collection. The aim of the present PhD thesis was the discovery and isolation of novel antimicrobial compounds with improved activities and/or novel MOAs as potential lead compound for a further drug discovery.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Denis Dardic
URN:urn:nbn:de:hebis:30:3-513822
Place of publication:Frankfurt am Main
Referee:Helge B. Bode, Peter E. Hammann
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/10/08
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/09/25
Release Date:2019/10/10
Tag:Natural Products; Svetamycin; antimicrobial resistance
Pagenumber:191
HeBIS PPN:454052634
Institutes:Biowissenschaften
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $