Holism in plant biogeography - improving the representation of, and interactions between, the biosphere, hydrosphere, atmosphere and pedosphere

  • The overarching goal of the thesis was to create a holistic predictive framework, a vegetation model, by improving the representations of and interactions between the biosphere, hydrosphere, atmosphere and pedosphere. Vegetation models rep- resent a crucial component of Earth system model since the properties of the land surface, via interactions with the atmosphere, can have extremely large climatic effect. Yet, there remains great uncertainty associated with the dynamics of the vegetated land surface. Various vegetation models have been critiqued for numerous reasons including overly simplistic representations of vegetation, prescribed vegetation, poor representations of diversity, inaccurate representations of competition, non-transparent model calibration, and poor responses to drought. The purpose of the creation of this "next generation" model was to address deficiencies common to current vegetation modelling paradigms. The representation of the biosphere within this framework was improved via two separate development axes. First, ecological realism was improved by integrating concepts from community assembly theory, co-existence theory, and evolutionary theory. Explicitly, rather than defining teleonomic rules to define plant behaviour the process of natural selection is modelled. By modelling the pro- cess of natural selection and its affect on relative fitness, myriad "rules" which continually adapt to biotic and abiotic conditions "come out" as a consequence of the modelled dynamics rather than being "put in". In aDGVM2 (adaptive Dynamic Global Vegetation model 2) communities of plants and their trait values evolve through time, this evolution is constrained by trade-offs between traits. Poorly performing individuals are more likely to die and produce fewer copies of themselves, this results in a filtering of trait values. Further, the community and species’ trait values can evolve through successive generations via reproduction, mutation and crossover which we approximate by using a genetic optimisation algorithm. Thus, a plant community consisting of individuals and species with potentially novel and diverse trait values is assembled iteratively through time. We tested the assertion that improved integration of concepts from community assembly, evolutionary, and co-existence theory could address limitations of DGVMs in Chapter 2. We demonstrated that such an approach does indeed allow diverse communities of plants to emerge from the modelling framework. We showed that the position of the emergent communities in trait space differed along abiotic gradients and that, in simulations where reproductive isolation was simulated, communities emerged which were composed of multiple co-existing clusters in trait-space. Simulated trait values of co-existing strategies emerging from aDGVM2 were often multimodal, indicative of the emergence of multiple life- history strategies. Second, to successfully model how natural selection forms a community requires accurate representation of how resource availability affects fitness. In the majority of dynamic global vegetation models (DGVMs) there is no real representation of plant hydraulics with plant water availability being calculated as a simple function of relative soil moisture content and root fractions across a number of soil layers. Worryingly, a number vegetation models appear to under represent the magnitude of these observed responses to drought. This was deficiency was ad- dressed in Chapter 3 by designing a simplified version of the cohesion tension theory of sapwood ascent where elements determining plant conductances are considered in series and implementing a set of trait trade-offs which influence a plant’s hydraulic strategy whereby hydraulic safety trades-off against xylem and leaf conductivity. Interactions between the biosphere, pedosphere, and hydrosphere can also potentially mediate water resource availability and thus fitness. In the majority of DGVMs the volume of soil explored and explorable by plant roots in fixed glob- ally and usually constrained to a depth not greater than 3m. However, we know that soils can have a strong effect on vegetation distributions, that soil depth is not constant globally, and that plants root to variable depths. In Chapter 4 I explored interactions between soil depth, plant rooting and the emergent properties of communities and highlighted the importance of considering interactions between the biosphere, hydrosphere, pedosphere, and fire. Here I demonstrated that, in addition to fire and precipitation, edaphic constraints on the volume of soil explorable by plant roots (e.g. by shallow soils, lateritic layers, anoxic conditions due to water logging, toxicity resulting from heavy metal concentrations) can affect the process of plant community assembly, alter the mean values of multiple traits in communities, and the trait diversity of communities. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Liam LanganORCiD
URN:urn:nbn:de:hebis:30:3-516291
Place of publication:Frankfurt am Main
Referee:Simon ScheiterORCiDGND, Steven Higgins
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/10/29
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/05/17
Release Date:2019/10/31
Page Number:225
HeBIS-PPN:454836732
Institutes:Geowissenschaften / Geographie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht