Vector distribution and transmission risk of the Zika virus in South and Central America

Background: Zika is of great medical relevance due to its rapid geographical spread in 2015 and 2016 in South America and its serious implications, for example, certain birth defects. Recent epidemics urgently require a 
Background: Zika is of great medical relevance due to its rapid geographical spread in 2015 and 2016 in South America and its serious implications, for example, certain birth defects. Recent epidemics urgently require a better understanding of geographic patterns of the Zika virus transmission risk. This study aims to map the Zika virus transmission risk in South and Central America. We applied the maximum entropy approach, which is common for species distribution modelling, but is now also widely in use for estimating the geographical distribution of infectious diseases.
Methods: As predictor variables we used a set of variables considered to be potential drivers of both direct and indirect effects on the emergence of Zika. Specifically, we considered (a) the modelled habitat suitability for the two main vector species Aedes aegypti and Ae. albopictus as a proxy of vector species distributions; (b) temperature, as it has a great influence on virus transmission; (c) commonly called evidence consensus maps (ECM) of human Zika virus infections on a regional scale as a proxy for virus distribution; (d) ECM of human dengue virus infections and, (e) as possibly relevant socio-economic factors, population density and the gross domestic product.
Results: The highest values for the Zika transmission risk were modelled for the eastern coast of Brazil as well as in Central America, moderate values for the Amazon basin and low values for southern parts of South America. The following countries were modelled to be particularly affected: Brazil, Colombia, Cuba, Dominican Republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Puerto Rico and Venezuela. While modelled vector habitat suitability as predictor variable showed the highest contribution to the transmission risk model, temperature of the warmest quarter contributed only comparatively little. Areas with optimal temperature conditions for virus transmission overlapped only little with areas of suitable habitat conditions for the two main vector species. Instead, areas with the highest transmission risk were characterised as areas with temperatures below the optimum of the virus, but high habitat suitability modelled for the two main vector species.
Conclusion: Modelling approaches can help estimating the spatial and temporal dynamics of a disease. We focused on the key drivers relevant in the Zika transmission cycle (vector, pathogen, and hosts) and integrated each single component into the model. Despite the uncertainties generally associated with modelling, the approach applied in this study can be used as a tool and assist decision making and managing the spread of Zika.
show moreshow less

Metadaten
Author:Sarah Cunze, Judith Kochmann, Lisa Katharina Koch, Elisa Genthner, Sven Klimpel
URN:urn:nbn:de:hebis:30:3-518243
DOI:http://dx.doi.org/10.7717/peerj.7920
ISSN:2167-8359
Pubmed Id:http://www.ncbi.nlm.nih.gov/pubmed?term=31745446
Parent Title (English):PeerJ, 2019, doi:10.7717/peerj.7920
Publisher:PeerJ, Inc.
Place of publication:London [u. a.]
Contributor(s):Joseph Gillespie
Document Type:Article
Language:English
Year of Completion:2019
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2019/11/27
Tag:Aedes aegypti; Aedes albopictus; Biogeography of disease; Climatic habitat suitability; Maxent; Species distribution modelling; Tiger mosquito; Vector borne diseases; Vectorpathogen-host; Yellow fever mosquito
Volume:2019
Pagenumber:19
First Page:1
Last Page:19
Note:
Distributed under Creative Commons CC-BY 4.0
HeBIS PPN:456377425
Institutes:Institut für Ökologie, Evolution und Diversität
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0

$Rev: 11761 $