Zelluläre und molekulare Regulationsmechanismen der Melatoninbiosynthese

Der tägliche und jahreszeitliche Wechsel in den Lichtverhältnissen bedeutet für alle Lebewesen eine regelmäßige und fundamentale Veränderung ihrer Lebensbedingungen. Mit Hilfe einer Inneren Uhr können Lebewesen regelmäßi
Der tägliche und jahreszeitliche Wechsel in den Lichtverhältnissen bedeutet für alle Lebewesen eine regelmäßige und fundamentale Veränderung ihrer Lebensbedingungen. Mit Hilfe einer Inneren Uhr können Lebewesen regelmäßige Veränderungen ihrer Umwelt antizipieren. Diese Innere Uhr gewährleistet die Generierung eines endogenen, zirkadianen Rhythmus und dessen Synchronisation mit der Umwelt. Bei Wirbeltieren werden diese Funktionen durch einen spezifischen neuronalen Schaltkreis im Gehirn, dem photoneuroendokrinen System (PNS), erfüllt. Das Pinealorgan ist ein essenzieller Bestandteil des PNS. Dort werden photoperiodische Reize und Signale vom endogenen Oszillator in die Synthese des Neurohormons Melatonin umgesetzt. Die vom zentralen Oszillator im SCN gesteuerte Freisetzung von Noradrenalin (NA) aus sympathischen-postganglionären Nervenfasern in das Pinealorgan ist der entscheidende Reiz zur nächtlichen Ankurbelung der Melatoninbiosynthese. Melatonin wird ausschließlich in der Nacht gebildet und fungiert daher als ein Zeithormon. Unmittelbar nach der Synthese wird das Melatonin in die Blutbahn abgegeben und liefert allen Zellen, die mit spezifischen Melatoninrezeptoren ausgestattet sind, die entsprechenden Licht- und Zeitinformationen. NA bewirkt in allen untersuchten Säugetierarten die Aktivierung des Schlüsselenzyms der Melatoninbiosynthese, der AANAT. Die zellulären und molekularen Regulationsmechanismen für die AANAT unterscheiden sich jedoch artspezifisch. So ruft NA in Pinealozyten der Ratte die cAMP/PKA/pCREB-vermittelte Aktivierung der Transkription des Aanat Gens hervor, wogegen in Pinealozyten des Rindes NA die Regulation der proteasomalen Proteolyse des AANAT Proteins kontrolliert. Das übergeordnete Ziel dieser Arbeit war es, zelluläre und molekulare Mechanismen der noradrenergen Signaltransduktionskaskade zu identifizieren, welche für die Steuerung der Melatoninbiosynthese im Pinealorgan von Säugetieren verantwortlich sind. Deshalb wurden in kultivierten Pinealozyten der Ratte und des Rindes sowohl transkriptionale als auch posttranslationale Regulationsmechanismen untersucht, welche durch NA gesteuert und an der Regulation des Schlüsselenzyms der Melatoninbiosynthese, der AANAT, beteiligt sind. Mit Hilfe der Immunzytochemie konnte erstmalig das subzelluläre Verteilungsmuster sämtlicher bekannter regulatorischer (R)-Untereinheiten der PKA Typ I und II in Pinealozyten der Ratte nachgewiesen werden. Ebenso wurden die A Kinase Anker Proteine (AKAP) 95 und 150 immunzytochemisch dargestellt, wobei zwischen der AKAP 150-Immunreaktivität (IR) und der IR von RII alpha bzw. RII beta eine weitgehende Kolokalisation in der Nähe der Zellmembran der Pinealozyten vorlag. Diese Kolokalisationen deuten eine funktionelle Interaktion der PKA Typ II mit AKAP 150 in Pinealozyten der Ratte an. Keine Funktion bei der Steuerung der Melatoninbiosynthese scheinen der cAMPregulierte Austauschfaktor EPAC und die monomere GTPase Rap zu besitzen. So konnte eine Stimulation kultivierter Pinealorgane mit 8-CPT-2'-O-Me-cAMP, einem EPAC-spezifischen cAMP-Analog, einzeln oder in Kombination mit Noradrenalin (NA) weder den AANAT Proteingehalt noch die Freisetzung von Melatonin beeinflussen. Die Ergebnisse der vorliegenden Arbeit belegen, dass die cAMP-vermittelte Aktivierung der Melatoninbiosynthese ausschließlich auf die PKA zurückzuführen ist. Ebenso beeinflussten weder NA noch 8- CPT-2'-O-Me-cAMP den Aktivitätszustand von ERK 1 und 2. Eine Erhöhung des cAMP-Spiegels in Pinealozyten der Ratte scheint somit keinen Einfluss auf den Aktivitätszustand von ERK 1 und 2 im Pinealorgan der Ratte auszuüben. In der vorliegenden Arbeit konnte gezeigt werden, dass die schnelle Dephoshorylierung von pCREB eine entscheidende Funktion bei der akuten Herabregulation des CRE-tragenden Aanat Gens darstellt und somit eine wichtige Rolle für die Beendigung der Melatoninbiosynthese im Pinealorgan der Ratte spielt. Nach Entzug des NA-Stimulus kam es innerhalb von 30 Minuten zu einer fast vollständigen pCREB Dephosphorylierung, die mit einer Abnahme der Aanat mRNA, des AANAT Proteingehalts und der Melatoninbiosynthese einherging. Die pCREB Dephosphorylierung und die Abnahme der Melatoninbiosynthese konnten durch PSP-Inhibitoren verhindert werden. Aufgrund der pharmakologischen Untersuchungen und des intrazellulären Verteilungsmusters scheint die PSP 1 die pCREB Dephosphorylierung im Zellkern der Rattenpinealozyten zu steuern. Mit Hilfe eines Ko-Immunpräzipitationsansatzes wurde erstmalig eine NA-abhängige Komplexbildung von AANAT und Protein 14-3-3 in Pinealozyten der Ratte und des Rindes dargestellt. Die vorliegenden Untersuchungen belegen somit, dass Tierarten, welche generell eine unterschiedliche molekulare Strategie zur Regulation der Melatoninbiosynthese entwickelt haben, mit der NA-abhängigen Ausbildung des AANAT/Protein 14-3-3 Komplexes jedoch einen gemeinsamen Mechanismus zur Regulation des AANAT Proteins besitzen. Ferner wurde die funktionelle Bedeutung des Cannabinoidsystems für die Steuerung der Melatoninbiosynthese im Pinealorgan der Ratte untersucht. Mit Hilfe der Immunhistochemie und des Immunoblotverfahrens konnten erstmalig CB 1- und 2 Rezeptorproteine im Pinealorgan der Ratte dargestellt werden. Die Stimulation kultivierter Pinealorgane der Ratte mit THC hatte keinen Einfluss auf den pCREB- und AANAT Proteingehalt, konnte jedoch die NA-induzierte Aktivierung des AANAT Proteins und die Melatoninfreisetzung hemmen. Das Pinealorgan der Ratte und des Rindes dient als ein gut geeignetes Modellsystem zum Studium von Signalskaskaden, da hier Noradrenalinreize in ein definiertes, einfach messbares Endprodukt, die Biosynthese und Sekretion des Neurohormons Melatonin, umgewandelt werden. Die in dieser Arbeit aufgedeckten Signaltransduktionsprozesse liefern daher nicht nur neue Einblicke in die Regulationsprozesse der Melatoninbiosynthese, sondern dienen ebenso dem besseren Verständnis von Signalübertragungs- und Signalverarbeitungsprozessen in komplexeren neuronalen und neuroendokrinen Systemen.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Marco Koch
URN:urn:nbn:de:hebis:30-0000003561
Referee:Herbert Zimmermann
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/02/02
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2003/12/16
Release Date:2004/02/02
SWD-Keyword:Säugetiere ; Melatonin ; Biosynthese ; Regulation
HeBIS PPN:118684051
Institutes:Biowissenschaften
Dewey Decimal Classification:590 Tiere (Zoologie)
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $