Eine integrierte RFQ-Driftröhrenkombination für ein Medizin-Synchrotron

Die vorliegende Arbeit stellt Design, Aufbau und erste experimentelle Testergebnisse einer integrierten RFQ-Driftröhrenkombination für den Einsatz im Injektorbereich einer klinischen Synchrotronanlage zur Behandlung von 
Die vorliegende Arbeit stellt Design, Aufbau und erste experimentelle Testergebnisse einer integrierten RFQ-Driftröhrenkombination für den Einsatz im Injektorbereich einer klinischen Synchrotronanlage zur Behandlung von Tumorerkrankungen mit Ionenstrahlen vor. Das Hauptziel der Bemühungen war, eine sehr kompakte und auf die gestellten Aufgaben hoch spezialisierte Lösung zu finden, die den täglichen Anforderungen im Klinikbetrieb gerecht wird. Zuverlässigkeit, einfache Bedienbarkeit und möglichst geringe Betriebskosten standen dabei im Vordergrund und führten letztlich zu einer nur 1,40 m langen Kombination der beiden Beschleunigerkomponenten, die üblicher Weise in zwei getrennten Kavitäten mit separater Leistungsversorgung, separater Steuerung und mit deutlich mehr Platzbedarf untergebracht sind. Im Zuge der Designarbeiten wurde insbesondere das Programm PARMPRO den hier aufgetretenen aktuellen Problemstellungen angepasst. Die Berechnung der Wechselwirkung von Ionen bei raumladungsdominierten Teilchenstrahlen wurde korrigiert, das Programm um ein Transportelement zu Transformation geladener Teilchen durch eine frei wählbare Potentialverteilung erweitert und mit einem neu entwickelten Programmteil wurden die zur Fertigung notwendigen Daten generiert. Die Optimierung der Strukturparameter mit Hilfe einer externen Visual-Basic-Anwendung zum automatischen Optimieren der Strukturdaten mit Hilfe von PARMPRO war ein Schritt auf dem Wege zum endgültigen, an die Eingangsstrahldaten und an die Erfordernisse der darauffolgenden IH-Struktur angepassten Elektrodendesign. Nach den Simulationsrechnungen erfolgten Referenzmessungen an entsprechenden Modellaufbauten insbesondere mit einem computergesteuerten Störkörpermessstand, zur experimentellen Bestimmung der Spannungsverhältnisse an der jeweils zu untersuchenden Strukturvariante. Auf diesen Ergebnissen basiert das endgültig entwickelte Resonatorkonzept der RFQ-Driftröhrenkombination. Das Kapitel "Aufbau des Medizin-RFQs" behandelt die Konstruktion und die technische Umsetzung des erarbeiteten Beschleunigerkonzepts. Einzelnen Beschleunigerkomponenten wie Tank, Elektroden, Resonatorstruktur, Bunchereinheit und deren Fertigungsprozesse werden vorgestellt, Arbeitsschritte wie das Verkupfern des Tanks in der Galvanik der GSI oder das Verfahren zum Versilbern von Kontaktteilen im hauseigenen Labor werden beschrieben. Es folgt eine Diskussion des Justierkonzepts und der Maßnahmen zur Einhaltung der erforderlichen Genauigkeiten von ca. 20 mm, um die berechnete Strahlqualität zu gewährleisen. Abschließend werden die Ergebnisse erster HF-Testmessungen auf Messsenderniveau beschrieben. Hier wurden zunächst experimentell grundlegende Resonatoreigenschaften wie etwa Resonanzfrequenz, Güte und Parallelersatzwiderstand bestimmt. Danach wurde ein spezielles Störkörpermessverfahren angewandt, um den über die Montagehöhe der Driftröhre einstellbaren Spannungsbereich der Bunchereinheit zu erfassen, da die geometrischen Verhältnisse einen computergesteuerten Messstand wie er zur Untersuchung der Modellaufbauten herangezogen wurde nicht zuließen. Abschließend erfolgte ein Abstimmen der Spannungsverteilung entlang der RFQ-Elektroden. Diese experimentellen Ergebnisse belegen eindrucksvoll die Funktionsfähigkeit der RFQ-Driftröhrenkombination, so ist insbesondere die erforderliche Buncherspannung auf einer mittleren Montagehöhe der spannungsführenden Driftröhre zu erreichen, die durch die zusätzlich Driftröhrenkapazität hervorgerufene Verzerrung der Spannungsverteilung auf den Elektroden lässt sich über die höhenverschiebbaren Kurzschlussplatten gut korrigieren. Das erarbeitete Gesamtkonzept dieser neuartigen, sehr kompakten RFQ-Driftröhrenkombination ist auch für andere Anwendungsbereiche sehr attraktiv, so dass bereits ein Patent darauf angemeldet wurde. Damit ist das Ziel, eine RFQ-Driftröhrenkombination für die medizinische Beschleunigeranlage in Heidelberg aufzubauen erreicht. Strahltests und die experimentelle Bestimmung der Phasen- und Energiebreite des Ionenstrahls sind als nächstes vorgesehen.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Bechtold
URN:urn:nbn:de:hebis:30-0000003478
Referee:Alwin Schempp
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/01/28
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2003/12/11
Release Date:2004/01/28
HeBIS PPN:118562967
Institutes:Physik
Dewey Decimal Classification:610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $