Erzeugung intensiver Pulse im Terahertzfrequenzbereich mittels laser-generieter Plasmen

Die opto-elektronische Erzeugung intensiver Terahertz-Pulse unter Verwendung von Verstärkerlaser-Systemen stellt eine leistungsfähige und im wissenschaftlichen Umfeld etablierte Technik dar. Es ist anzunehmen, dass diese
Die opto-elektronische Erzeugung intensiver Terahertz-Pulse unter Verwendung von Verstärkerlaser-Systemen stellt eine leistungsfähige und im wissenschaftlichen Umfeld etablierte Technik dar. Es ist anzunehmen, dass diese Technik in Zukunft auch für kommerzielle Anwendungen eingesetzt werden wird. (Z.B. entwickelt die Firma Nikon, Japan ein Echtzeit- Bildgebungssystem mit opto-elektronisch erzeugter Terahertz-Strahlung basierend auf einem Verstärkerlaser.) In dieser Arbeit werden gängige und neuartige opto-elektronische Terahertz-Emitter für Verstärkerlaser theoretisch und experimentell untersucht. Zur experimentellen Untersuchung wurde die Methode der elektro-optischen Detektion, welche in der Arbeit ausführlich vorgestellt wird, verwendet. Dabei wird insbesondere die spektrale Detektorempfindlichkeit dargestellt und eine Methode zur Durchführung kalibrierter Messungen vorgestellt, welche auch für die Verwendung mit Verstärkerlasern geeignet ist. Zu den untersuchten bekannten Emittern gehört der vor ca. 10 Jahren erstmals vorgestellte groß- flächige GaAs-Emitter mit externem Feld. Obwohl dieser Emitter in der Literatur bereits ausführlich untersucht wurde, werden in der vorliegende Arbeit über den Stand der Literatur hinausgehende neue Aspekte wie die Feldabschirmung auf Grund von Ladungsträgerverschiebung und die Abhängigkeit der erzeugten THz-Feldstärke bzw. der THz-Pulsenergie von der Emitterfläche diskutiert. Zudem erfolgt die Behandlung dieses Emitters erstmals vollständig quantitativ, wobei eine gute Übereinstimmung mit den experimentellen Daten erreicht wird. Der zweite in der Arbeit untersuchte Emitter ist der großflächige ZnTe-Emitter. Die elektro-optische Erzeugung von THz-Strahlung in ZnTe-Kristallen mit hoch-repetierlichen Kurzpuls-Lasersystemen ist langjährig bekannt. Die Verwendung großflächiger ZnTe-Kristalle in Verbindung mit Verstärkerlasern wurde allerdings in Rahmen dieser Arbeit erstmals demonstriert. Vor dem Hintergrund der demonstrierten hervorragenden Eigenschaften dieses Emitters ist dieses besonders erstaunlich. Der Hauptteil der Arbeit beschäftigt sich mit der neuartigen Erzeugung von THz-Pulsen in laser-generierten Plasmen. Dabei wurden zwei Methoden untersucht. Die erste Methode, welche im Rahmen dieser Arbeit erstmals realisiert wurde, basiert auf einer Vorspannung des Plasmas mit einem externen elektrischem Feld. Die Methode ist vergleichsweise wenig effektiv, stellt aber eine gute Möglichkeit zur Überprüfung der in der Arbeit entwickelten Modelle für die THz-Emission dar. Die zweite Methode, die erstmals von Cook et al. im Jahre 2000 demonstriert wurde, basiert auf einer "optischen Vorspannung" des Plasmas mittels der Überlagerung des Laserpulses der Fundamentalfrequenz mit einem phasensynchronen Laserpuls der zweiten Harmonischen. Die ausführliche experimentelle und theoretische Untersuchung dieser Methode beinhaltet eine quantitative Modellierung der zu erwartenden Ergebnisse auf Basis des von Cook et al. vorgestellten phänomenologischen Modells, welches auf zeitunabhängigen Nichtlinearitäten dritter Ordnung im Plasma oder in der Luft beruht. Die in dieser Arbeit vorgestellte quantitative Analyse legt die Schlussfolgerung nahe, dass das phänomenologische Modell von Cook et al. in der vorliegenden Form in Frage gestellt werden muss. Daher wurde im Rahmen der Arbeit ein einfaches Modell zur Erklärung der mikroskopischen Ursache der Nichtlinearität entwickelt. Dieses Modell beinhaltet die Kopplung der Nichtlinearität mit dem lokalen Ionisierungsprozess und damit formal auch eine explizite Zeitabhängigkeit der Nichtlinearität im Plasma. Die quantitative Modellierung der makroskopischen THz-Emission auf Basis des mikroskopischen Bildes der Generations-Nichtlinearitäten zeigt, dass das Modell die experimentellen Befunde zufriedenstellend beschreiben kann. Die Arbeit schließt mit einem Vergleich der untersuchten Emitter in Bezug auf spektrale Eigenschaften, Effizienz und Sättigungsverhalten. Bei der Darstellung des Sättigungsverhaltens wird anhand der in der Arbeit entwickelten Modelle versucht die Entwicklung der erzeugten THz-Feldamplituden für Laserpulsenergien von bis zu 50 mJ vorauszusagen. Diese Abschätzung lässt vermuten, dass der Plasma-Emitter für Laserpulsenergien von 10mJ und mehr das Potential hat, deutlich höhere THz-Feldamplituden zu erzeugen als alle gängigen Standardemitter. Entsprechende Experimente in diesem Laserpuls-Energiebereich sind am Front-End des PHELIX-Lasers der GSI (Gesellschaft für Schwerionenforschung) in Darmstadt im Rahmen der Fortführung der Forschungsarbeiten geplant.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Torsten Löffler
URN:urn:nbn:de:hebis:30-0000003464
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/01/27
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2003/12/11
Release Date:2004/01/27
Tag:Laser; Optoelektronik; Plasma; Terahertzstrahlung
SWD-Keyword:Lasererzeugtes Plasma ; FIR ; Puls <Technik>
HeBIS PPN:11920827X
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $