Kristallzüchtung und Charakterisierung von eisenbasierten Pniktid-Supraleitern

  • Ziel der vorliegenden Arbeit war die Optimierung der Kristallzüchtung von eisenbasierten Supraleitern. Im ersten Teil lag der Fokus dabei auf der Züchtung der 1111-Verbindung unter Hochdruck/Hochtemperaturbedingungen (HD/HT), sowie der systematischen Untersuchung verschiedener Einflüsse der Züchtung dieser Familie unter Normaldruckbedingungen. Die HD/HT-Experimente führten unter den gewählten Parametern, sowohl unter der Verwendung eines Flussmittels als auch ohne, nicht zur Stabilisierung der gewünschten Zielphase. Stattdessen kam es zur Phasenseparation So bildete sich immer im Inneren des verwendeten BN-Tiegels ein, häufig kugelförmig ausgeformtes, Gebilde, bestehend aus einer Fe-As-Phase. Dies gilt sowohl für NdFeAsO als auch LaFeAsO1-xFx. Bei der Verwendung von Salz als Flussmittel kam es neben dieser Fe-As-Phase auch häufig zur Bildung einer Cl-haltigen Phase. Auch zeigte sich, dass es zu einer B-Diffusion während des Versuches kam, sodass Selten-Erd-Oxoborate nachgewiesen werden konnten. Durch einen Versuch unter Normaldruckbedingungen zeigte sich, dass dies kein Problem in der Hochdrucksynthese ist, sondern ein grundlegendes Problem bei der Verwendung von BN mit den Selten-Erden ist. Nachdem gezeigt wurde, dass eine systematische Untersuchung bzw. Optimierung der Züchtungsparameter der 1111-Verbindungen unter HD/HT-Bedingungen enorm schwierig ist, lag der weitere Fokus auf der Züchtung unter Normaldruckbedingungen. Dazu wurde zu Beginn gezeigt, dass die Verwendung von Quarzampullen bei Temperaturen bis zu 1200 °C nicht zu einer zusätzlichen Sauerstoffdiffusion führen. Dies ermöglichte es ohne zusätzliche Schweißarbeit oder hohen Kosten den Optimierungsprozess für ein geeignetes Temperatur-Zeit-Profil durchzuführen. Das so erhaltene Profil wurde anschließen für alle weiteren Versuche verwendet. Mit dieser Basis wurde daraufhin untersucht, welchen Einfluss die Menge an Flussmittel auf die Stabilisierung der Phase und demnach auf die Kristallzüchtung hat. Dabei zeigte sich, dass ein molares Material-zu-Flussmittel-Verhältnis von 1:7 die besten Resultate liefert. Der nächste Optimierungsschritt, die Frage nach einem geeigneten Sauerstoffspender, in Angriff genommen. Bei dieser Frage wurde sich auf einen Sauerstoffspender aus der Gruppe der Eisenoxide konzentriert. Es zeigte sich, dass, für das gewählte Temperatur-Zeit-Profil die Verbindung FeO und Fe3O4 die besten Resultate liefern. In diesen Versuchen ist es gelungen Kristalle zu züchten die Kantenlängen bis zu 800 μm aufweisen. Allerdings zeigten Vergleichsversuche mit einen anderen Temperatur-Zeit-Profil, dass Fe2O3 in diesen Fällen die besten Resultate liefern. Dies macht deutlich, dass es bisher keine vollständige Kontrolle in der Züchtung der 1111-Verbindung gibt. Die Veränderung eines Züchtungsparameters bedeutet, dass auch alle anderen Parameter erneut geprüft werden müssen. Somit zeigte sich, dass eine fundierte und systematische Untersuchung der Züchtungsparameter notwendig ist. Nachdem die grundlegenden Fragen für die undotierte Verbindung NdFeAsO beantwortet wurden, wurde untersucht, welche Sauerstoff-Fluorspenderkombination bei gegebenem Temperatur-Zeit-Profil optimal für den Kristallwachstum und den Fluoreinbau ist. Die erhaltenen Resultate belegten, dass in diesem Fall Fe3O4 und FeF2 zu den besten Resultaten führte. Die so gezüchteten Kristalle wiesen Kantenlängen bis zu 800 μm auf und Messungen des elektrischen Widerstandes zeigten einen maximalen Tc ≈ 53 K mit einen RRR-Wert im magnetischem Bereich von über 10. Damit unterscheiden sich die gezüchtete Kristalle hinsichtlich ihrer Qualität um den Faktor ~3 von den bisherigen Einkristallen bekannt aus der Literatur. Durch die Ermittlung des reellen Fluorgehalts der Proben mittels WDX in Kombination mit elektrischen Widerstandsmessungen wurde ein vorläufiges Phasendiagramm erstellt. Magnetische Messungen unter Normaldruck und Hochdruckbedingungen ermöglichten es die Anisotropie zwischen der ab- Ebene und der c-Ebene zu messen, sowie das Verhalten des elektrischen Widerstandes in Abhängigkeit vom Druck. Es zeigte sich dabei, dass ab einem Druck von etwa 22.9 GPa die Supraleitung in diesen Kristallen nicht mehr vorhanden ist, und der Kristall wieder normalleitend ist. Mit weiter steigendem Druck steigen die Absolut-Widerstandswerte ebenfalls wieder an, was auf eine mögliche ferromagnetische Ordnung deutet. Im zweiten Teil der Arbeit lag der Fokus auf einer Verbindung aus der 122-Familie der Pniktide: SrFe2As2. Zu Beginn wurde untersucht, welches der drei gewählten Tiegelmaterialien BN, Al2O3 oder Glaskohlenstoff, für Züchtungen dieser Phase am geeigneten ist. In allen Versuchen konnte die gewünschte Zielphase stabilisiert werden, jedoch kam es bei der Verwendung von Glaskohlenstoff zu Diffusion von Kohlenstoff aus dem Tiegel in die Probe hinein, sodass C-haltige Phasen nachweisbar waren. Ebenso zeigte sich, dass es auch eine Diffusion vom Material in den Tiegel hinein gegeben hat. Diese Probleme traten auch bei der Verwendung von Al2O3 auf. Durch ein Röntgenpulverdiffrakgtogramm konnte eine Al-haltige Verbindung in der Probe nachgewiesen werden. Ein weiterer Nachteil dieses Materials ist die Benutzung des Tiegels durch die Schmelze. Von den drei Materialien erwies sich BN als am besten geeignetes Tiegelmaterial. Es kommt zu keiner Benetzung oder Diffusion, auch der Fremdphasenanteil ist sehr gering in dieser Probe. Mit diesem Wissen wurde im weiteren Verlauf ein quasi-binäres Phasendiagramm des Systems SrFe2As2-FeAs erstellt. Die intermetallische Verbindung FeAs fungiert hierbei als Flussmittel. Eine wichtige Frage in diesem Zusammenhand ist die Frage ob das System kongruent erstarrend ist. Diese Frage lässt sich anhand der vorhandenen DTA-kurven nicht eindeutig beantworten, zeigte das System bei Aufheizen keine zusätzlichen Schmelzprozesse, es scheint allerdings, dass es in der Schmelze zu einem Abdampfen von Arsen kommt. Somit verschiebt sich die Zusammensetzung der Schmelze und beim Abkühlen treten zusätzliche Erstarrungsprozesse auf. Die Schmelztemperatur TM wurde so auf T = 1320 °C bestimmt. Mit steigendem Flussmittelanteil verschob sich diese Temperatur zu niedrigeren Temperaturen unter 1200 °C, was eine Züchtung in Quarzampullen wieder möglich macht. Die Ergebnisse in dieser Arbeit liefern eine fundierte Grundlage für weitere Optimierungen. So ist zum Beispiel der Frage nach dem am besten geeigneten Sauerstoffspender nicht auf die Selten-Erd-Oxide eingegangen worden. Auch ob die Verwendung eines anderen Salzes, wie zum Beispiel den Iodiden für die Züchtung bessere Resultate liefert kann weiterhin untersucht werden. Nachdem der Schmelzpunkt von SrFe2As2 bestimmt wurde und im quasi-binärem Phasendiagramm ein Eutektikum vorhanden ist, kann mit den weiteren Optimierungsschritten für die Kristallzüchtung dieses Systems begonnen werden. Dazu gehört die Entwicklung eines Temperatur-Zeit-Profils, sowie im nächsten Schritt Züchtungen von dotierten Verbindungen.

Download full text files

  • Dissertation_Adamski_Agnes_Marta.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Agnes Marta AdamskiGND
URN:urn:nbn:de:hebis:30:3-527112
Referee:Cornelius KrellnerORCiDGND, Michael Lang
Advisor:Cornelius Krellner
Document Type:Doctoral Thesis
Language:German
Year of Completion:2019
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/07/04
Release Date:2020/01/22
Page Number:160
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:460234358
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG