Produktion von Partonen in Anwesenheit klassischer Felder in ultrarelativistischen Schwerionenkollisionen

Diese Arbeit untersucht die Produktion von Teilchen durch Vakuumpolarisation in Anwesenheit klassischer Felder. Eine unquantisierte Beschreibung des bosonischen Sektors einer Quantenfeldtheorie wird möglich, wenn dieser 
Diese Arbeit untersucht die Produktion von Teilchen durch Vakuumpolarisation in Anwesenheit klassischer Felder. Eine unquantisierte Beschreibung des bosonischen Sektors einer Quantenfeldtheorie wird möglich, wenn dieser stark besetzt ist. Sind die Besetzungszahlen größer als eins, können Quantenprozesse als Korrekturen angesehen werden. Für die Fermionen gibt es wegen des Paulischen Prinzips kein solches Konzept. Situationen mit diesen starkbesetzten Feldern finden sich im Fall der Quantenchromodynamik (QCD) zum Beispiel in ultrarelativistischen Schwerionenkollisionen. Diese werden zur Zeit am Relativistic Heavy Ion Collider (RHIC) am Brookhaven National Laboratory durchgeführt und in Zukunft am Large Hadron Collider (LHC) am CERN untersucht werden. Diese hochbesetzten sind auch starke Felder. Damit können in Abwesenheit weiterer Skalen Prozesse mit unterschiedlich häufigen Kopplungen an das Hintergrundfeld nicht parametrisch unterschieden werden. Die dominanten Quanteneffekte werden durch Terme der klassischen Wirkung. die zweiter Ordnung in den Quantenfeldern sind, repräsentiert. Alle diesbezüglichen Informationen sind in den Propagatoren der entsprechenden Quanten enthalten. Wegen der starken Felder müssen hier die vollen Propagatoren im Hintergrundfeld benutzt werden. Bei schwacher Kopplung - in führender Ordnung in den Quanteneffekten - enthalten sie alle Details über die Streuung der Quantenteilchen am Feld und deren Produktion durch Vakuumpolarisation. Ohne weitere radiative Korrekturen, gibt es in der Quantenelektrodynamik die Produktion von Elektron-Positron-Paaren. Analog dazu werden in der QCD Quark-Antiquark-Paare produziert. Dort kommt aber wegen der Nichtlinearität des Feldtensors noch die Produktion von Paaren gluonischer Quantenfluktuationen hinzu. Die Quarks und Antiquarks sowie die gluonischen Quantenfluktuationen sind parametrisch nicht zu unterscheiden. Für Schwerionenkollisionen lassen sich Größen wie die anfängliche Energiedichte und die Zerfallszeit des hochdichten Regimes abschätzen. Es stellt sich nun die Frage, ob man bei Einschränkung auf diese Situationen eine der beiden Quantenspezies als unwichtig vernachlässigen kann. Im Bereich hoher Teilchenimpulse, läßt sich die Produktion störungstheoretisch beschreiben. Hier untersuche ich zunächst in der niedrigsten Ordnung der klassischen Wirkung die Produktionsprozesse der beiden Arten von Quanten bei Anwesenheit beliebiger Felder. Für die Aufteilung des Gluonenfeldes in seinen Erwartungswert und seine Fluktuationen wird die Hintergrundfeldmethode der QCD verwendet. Für den Spezialfall rein zeitabhängiger Felder werden die Produktionsraten für Parametersätze, wie sie für RHIC und LHC erwartet sind, angegeben. Es stellt sich heraus, daß auf perturbativem Niveau sowohl Situationen, in denen die Fermionen dominieren, als auch solche, in denen die gluonischen Quantenfluktuationen überwiegen' vorkommen. Im Fall der Gluonen könnte der stark besetzte niederengetische Bereich durch das klassische Feld und der hochenergetische schwächer besetzte durch eine perturbative Beschreibung hinreichend genähert sein. Da es für die Fermionen jedoch kein klassisches Feld gibt, bliebe ihr niederenergetischer Bereich vollkommen unbehandelt. Hier ist auf jeden Fall eine nichtperturbative Beschreibung notwendig. Diese kann auf dem vollen Fermionpropagator im Hintergrundfeld aufgebaut werden. Der bereits oben verwendete Spezialfall eines rein zeitabhängigen Feldes kann als Näherung eines boostinvarianten Szenarios in der zentralen Region der Schwerionenkollision gesehen werden. In Anwesenheit derartiger Felder wird hier der volle retardierte Propagator hergeleitet. Für den exakten Propagator und alle Näherungen wird das Impulsspektrum der produzierten Fermionen berechnet. Dabei stellt sich die sogenannte Abelsche Näherung als bester Kandidat neben der exakten Beschreibung heraus. Sie entspricht, im Gegensatz zur störungstheoretischen Näherung, bei der die Fermionen immer mir ihrem asymptotischen kinematischen Impuls propagiert werden, einer Propagation mit dem mittleren kanonischen Impuls, was die Verbesserung der Näherung erklärt. Mit den, durch die induzierten Strömen modifizierten Yang-Mills-Gleichungen, stellt die Arbeit das komplette Funktionensystem dar, daß benötigt wird, um eine selbstkonsistente Berechnung des klassischen Feldes mit perturbativ beschriebenen gluonischen Quantenfluktuationen und exakt berechneten Quarks und Antiquarks durchzuführen.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Dennis Dean Dietrich
URN:urn:nbn:de:hebis:30-0000003217
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/11/19
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2003/09/18
Release Date:2003/11/19
HeBIS PPN:115193537
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $