Die optischen und elektronischen Eigenschaften elektronenstrahlinduzierter metallorganischer Deponate

Gegenstand dieser Arbeit war die Untersuchung der optischen und elektronischen Eigenschaften von metallorganischen Materialien, die mit dem Verfahren der Elektronenstrahlinduzierten Deposition hergestellt wurden. Da es s
Gegenstand dieser Arbeit war die Untersuchung der optischen und elektronischen Eigenschaften von metallorganischen Materialien, die mit dem Verfahren der Elektronenstrahlinduzierten Deposition hergestellt wurden. Da es sich bei diesen noch relativ unerforschten Endprodukten um Materialmengen von wenigen Nanogramm Gewicht und geometrische Abmessungen im Sub-µm-Bereich handelt, wurden hierzu neue Verfahren der Herstellung, Strukturierung und Charakterisierung entwickelt. Sowohl die optischen als auch die elektronischen Eigenschaften dieser Deponate besitzen einen gemeinsamen physikalischen Nenner in ihrer inneren Morphologie: ein nanokristallines dielektrisches Verbundmaterial, das aus metallischen Kristalliten und organischen Polymeren gebildet wird. Im Hinblick auf die Durchführung der Untersuchungen war das Augenmerk auf zwei potentielle industrielle Anwendungen gerichtet: den Photonischen Kristallen und den Einzelelektronen-Phänomenen bei Raumtemperatur. Mit Hilfe von Beugungsexperimenten im Fernfeld wird ein Verfahren gezeigt, das eine der periodischen Struktur von Photonischen Kristallen angepaßte Charakterisierung von Materialstrukturen mit optischer Bandlücke ermöglicht. Das mathematische Grundgerüst bildet dabei eine rigorose Streutheorie, die als Lösung der Helmholtz-Gleichung an dielektrischen Zylindern mit wenigen hundert nm Durchmesser den Experimenten zugrunde gelegt wird und sowohl für die praktische Dimensionierung des Versuchsaufbaus als auch für die theoretische Auswertung der Meßdaten, z.B. für die Brechungsindexbestimmung, dient. Die Herstellung und Kontrolle der Eigenschaften von Einzelelektronen-Tunnelelementen (SETs, Single Electron Tunneling Devices), welche bei hohen Temperaturen mit einer abzählbar kleinen Anzahl von Elektronen noch arbeiten, dürfte wohl eine der größten Herausforderungen in der heutigen Festkörperelektronik sein. Obwohl die Idee dazu, auf Basis der "Orthodoxen Theorie", bis auf die 80er Jahre des vergangenen Jahrhunderts zurückgeht, konnten nennenswerte Ergebnisse nur unter "Laborbedingungen" mit entsprechend hohem experimentellem Aufwand erzielt werden. In der vorliegenden Arbeit wird ein neuer Weg gegangen, um die beiden wesentlichen Bedingungen der orthodoxen Theorie, nämlich die Kleinheit der Kapazitäten und hohe Tunnelwiderstände, durch das ungeordnete nanokristalline Netzwerk der metallorganischen Deponate zu erfüllen. Die Motivation hierzu liegt in der hochohmigen organischen Matrix der Deponate, die mit darin eingebetteten elektrisch isolierten Nanokristalliten (die mit Durchmessern zwischen 1 nm und 2.5 nm ausgezeichnete Quantenpunkte bilden) eine ideale Umgebung für den Betrieb von Einzelelektronen-Tunnelelementen bereitstellen. Ein stabiles Verhalten unter hohen Temperaturen und eine ausgeprägte Resistenz gegen quantenmechanische Fluktuationen (z. B. dem Co-Tunneln oder Hintergrundladungen) wird durch den Aufbau von nanokristallinen Netzwerken, die in der Arbeit als "Über-SET" bezeichnet werden, erreicht. Mit Hilfe der entwickelten speziellen Technik lassen sich Nanokristallite elektrisch bis zur quantenmechanischen Tunnelgrenze voneinander isolieren und als Quantenpunkte betreiben. Die dabei beobachtbaren Phänomene sind diskretisierte I/U-Kennlinien und das Blockade-Verhalten der Spannung bei Raumtemperatur, deren Entstehung in Monte-Carlo-Simulationen auf zwei physikalische Grundprinzipien zurückgeführt wird: der Ausbildung von Einfangzuständen (Traps) für Elektronen an Grenzstellen und dem Mechanismus des negativen differentiellen Widerstandes (NDR, Negative Differential Resistance). Beide Effekte fungieren in einer gegenseitigen Kombination zueinander durch Coulomb-Wechselwirkungen zu einem mikroskopischen Schalter für den gesamten Strom.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Kaya
URN:urn:nbn:de:hebis:30-0000003114
Referee:Hartmut Roskos
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/10/15
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2003/08/04
Release Date:2003/10/15
Tag:Brechungsindex; Einzel-Elektronen-Transistor; Elektronenstrahlinduzierte Deposition; Photonische Bandlücke; Photonische Kristalle
E-beam induced deposition; EBID; Photonic band gap; Photonic crystals; Room temperature
HeBIS PPN:114292205
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $