Energie-, orts- und zeitaufgelöster Nachweis hochenergetischer Photonen für medizinische und physikalische Anwendungen : Xenon-Zeit-Projektions-Kammer mit integriertem Photonendetektor und entkoppelter Ortsauslese

Rückblick Die Motivation für diese Arbeit ergibt sich aus den immer neuen Fragestellungen der modernen Wissenschaft. Deren Beantwortung hängt wesentlich von den geeigneten Messapparaturen ab, die Einblicke in physikalisc
Rückblick Die Motivation für diese Arbeit ergibt sich aus den immer neuen Fragestellungen der modernen Wissenschaft. Deren Beantwortung hängt wesentlich von den geeigneten Messapparaturen ab, die Einblicke in physikalische Prozesse erlauben. Durch effektivere und höher auflösende Detektoren werden präzisere, schnellere und schonendere Messungen möglich. Die Zielsetzung dieser Arbeit über den Hochdruck-Gas-Szintillations-Proportionalzähler ist es, einen Detektor zu entwickeln, mit dem hochenergetische Photonen praktisch vollständig vermessen werden können. Dazu gehören: - die Photonenenergie im Bereich von 5 bis 500 keV, - die Richtung der einfallenden Strahlung (bzw. der Auftreffort auf dem Detektor), - der Absorptionszeitpunkt und - die Diskriminierung von Gamma-induziertem Untergrund. Potenzielle Einsatzgebiete des Detektors sind im wesentlichen medizinische, atom- und astrophysikalische Anwendungen. Die vielversprechenden Eigenschaften dieses Detektorkonzeptes, gegenüber herkömmlichen Gasdetektoren, ergeben sich aus den Mechanismen der primären und der sekundären Gasszintillation. Daraus folgen der überlegene Verstärkungsprozess und das schnelle Zeitsignal. Als Grundlage für die in dieser Arbeit diskutierten Ergebnisse dienen die zuvor von Dangendorf und Bräuning entwickelten Konzepte und die von ihnen gebauten Prototypen. Sie sind geeignet für kleine und mittlere Photonenenergien und liefern eine gute Energie- und Zeitauflösung. Die Tests der Ortsauslese mit abbildenden, optischen Systemen zeigten erste Resultate. Ausgehend von diesen bestehenden Entwicklungen war die Motivation der Arbeit, den Aufbau an die gewünschten Anforderungen anzupassen. Für die höheren Photonenenergien werden ein dichterer Absorber, also ein höherer Gasdruck und damit verbunden neue Auslesekonzepte benötigt. Problem Ein zentrales Problem, das aufgrund dieser neuen Anforderungen auftritt, ist der Druckunterschied zwischen dem Hochdruck-Szintillator und der bei Niederdruck oder im Vakuum betriebenen UV-Auslese. Die dadurch bedingten Kräfte machen entweder besondere Stützstrukturen oder stabile - und dadurch dicke - Fenster erforderlich. In beiden Fällen geht ein Teil des Signals verloren und die Detektorauflösung nimmt ab. Es handelt sich dabei jedoch nicht um prinzipielle Probleme. Die Schwierigkeiten sind rein technischer Natur. Deshalb wurde intensiv weiter nach neuen Konzepten und Lösungsansätzen gesucht, die die Vorteile dieser überlegenen physikalischen Prozesse ausnutzen können. Lösungsansatz Das konkrete Ziel - bzw. die Aufgabenstellung - dieser Arbeit war, mit neuen Technologien, und dabei vor allem mit einem neuen Mikrostruktur-Elektroden-System, bislang bestehende technische Hürden zu überwinden (Kapitel 3). Durch die Möglichkeit, einen in das Hochdruckvolumen integrierten Photonendetektor zu bauen, werden viele der Stabilitätsprobleme gelöst. Mit der großflächigen Auslese des Szintillationslichts direkt dort, wo es entsteht, werden die Transmissionsverluste in Fenstern vermieden. Es gibt damit nur kleine raumwinkelabhängige Effekte und es wird nur ein Gasvolumen und damit kein zusätzliches System zum Evakuieren, Zirkulieren und Reinigen benötigt. Durch die Trennung der Energie- und der Ortsinformation und deren separate Auslese wird zwar die Komplexität des Detektors erhöht, die Teilsysteme können jedoch unabhängig für die jeweiligen Anforderungen optimiert werden. Grundlagen Im Rahmen dieser Arbeit wurden bereits existierende Erfahrungen aufgegriffen und in deren logischer Fortsetzung, ein, in das Szintillatorvolumen integrierter, UV-Photonendetektor entwickelt. Zunächst musste mit einer umfangreichen Recherche ermittelt werden, welche Anforderungen an einen integrierten Photonendetektor bestehen und wie ein solches System in den Aufbau eingebunden werden kann. Mit dem GEM, der sich schon in diversen anderen Gasdetektoranwendungen als universell einsetzbarer Verstärker bewährt hatte, war ein potenzielles Mikrostuktur-Elektroden-System für unsere Anwendung gefunden. Um die Einsatztauglichkeit dieser Mikrostrukturen für die neuen Applikationen zu analysieren, wurden sie im Standard-Design, unter vielen verschiedenen Betriebsparametern getestet. Dabei wurden wertvolle Erfahrungen im Umgang mit den Mikrostrukturen gesammelt. Die GEMs wurden in den typischen Detektorgasen, bei verschieden Drücken, elektrischen Spannungen und Feld-stärken studiert. Dabei wurden die Chancen, aber auch - vor allem aufgrund elektrischer Überschläge und Instabilitäten - die Grenzen des damit Erreichbaren, aufgezeigt. Mit der Herstellung der speziell für diese Anwendung entwickelten GEMs wurde die Grundlage für den stabilen Betrieb des Detektors geschaffen. Simulationsrechnungen In Kooperation mit einer italienischen Gruppe vom INFN in Cagliari haben wir, mit dem Detektor-Simulations-Programm Garfield, Berechnungen durchgeführt (Kapitel 4). Damit konnte schon vor der technischen Realisierung ein Überblick über die Betriebsbedingungen eines mehrstufigen und komplexen Systems gewonnen werden. Dazu zählen die messtechnisch erfassbaren Größen, wie z.B. die mittlere Gasverstärkung und Diffusion. Daneben konnten aber auch die Prozesse im Kleinen studiert werden. Von besonderem Interesse für die Funktion des Detektors ist dabei der Verlauf der Feldstärke in den Poren der Mikrostrukturen und den umliegenden Regionen. Dessen räumlicher Verlauf in Kombination mit den jeweiligen Gasdaten bestimmen die Elektronentransportparameter, die Gasverstärkung, die Diffusion und die Effizienz. In den Xenon-Szintillator integrierter UV-Photonen-Detektor Der UV-Photonendetektor konnte in zwei Varianten erfolgreich in ein Volumen mit dem Xenon-Gas-Szintillator integriert werden. Die Verbindung der CsI-Photokathode mit dem Elektronenverstärker wurde dabei zum einen als semitransparente dünne Schicht auf einer Quarzglasplatte vor der GEM-Folie und zum anderen als opake Variante auf der Frontseite des GEM realisiert. Bei der Auslese des Xenon-Szintillationslichts mit einer in reinem Xenon und bei hohem Druck betriebenen CsI-Photokathode, wurde Neuland betreten. Es wurde erfolgreich gezeigt, dass der integrierte Photonendetektor auf GEM Basis für die hier diskutierten Einsatzbereiche und Anforderungen funktioniert. Die Ankopplung der Photokathode an die Verstärkerstruktur und dabei vor allem der Elektronentransport von der CsI-Schicht in die Verstärkungszone, wurden im Detail untersucht. Dass die Gasverstärkung in reinem Xenon bei den beschriebe-nen Betriebsparameter überhaupt funktioniert, liegt zum einen daran, dass die optische Rückkopplung mit diesem neuen Design effektiv unterdrückt werden kann. Zum anderen konnten die Einflussparameter auf die Gasverstärkung, für den mehrstufigen GEM-Verstärkungsprozess in reinem Xenon, im Detail untersucht werden. Die gekoppelten Gas-Verstärker-Elemente wurden mit einer eigens für diese Anwendung entwickelten Versorgungsspannungsquelle betrieben, die die Folgen von elektrischen Überschlägen minimiert (Kapitel 5.1.3). Gegenüber den herkömmlichen Gasdetektoren ist es mit diesem neuartigen Aufbau möglich, den UV-Photonen-Detektor bei diesen Betriebsparametern stabil zu betreiben. Abbildende Optiken - optische und mechanische Eigenschaften Parallel zur Entwicklung dieses großflächigen Detektors zur Messung des Energiesignals und der Registrierung des primären Lichts, wurde das Konzept zur Ortsauslese via abbildender Optik weiterverfolgt. Die optischen Abbildungseigenschaften der Linsen wurde im Wellenlängenbereich des Xenon-Szintillationslichtes untersucht. In ersten Tests konnte bei kleinen Gasdrücken und somit geringen mechanischen Beanspruchungen die Ebene der Sekundär-lichterzeugung auf einen gekapselten Mikro-Kanal-Platten-Detektor abgebildet werden. Die Festigkeit der Quarzglaslinse für die Druckbeanspruchungen im hier diskutierten Detektor konnte in Zusammenarbeit mit der Fachhochschule Heilbronn - mittels Finite-Elemente-Berechnung - als ausreichend verifiziert werden. Ausblick Die beiden getrennten Systeme für Orts- und Energiemessung funktionieren unabhängig voneinander. Die Vorraussetzungen für die Kombination der Komponenten in einem gemeinsamen Aufbau sind damit geschaffen. Damit ist der Weg für die folgenden Schritte in diesem Projekt aufgezeigt. Als logische Fortsetzung dieser Arbeiten ist geplant, den integrierten Photonendetektor mit der Photokathode auf der GEM-Frontseite, zusammen mit der Ortsauslese gemeinsam aufzubauen. Von dieser Kombination profitiert das Auflösungsvermögen beider Messungen. Die Korrektur der ortsabhängigen Schwankungen in der Effizienz der Photokathode verbessert die Energieauflösung signifikant. Auf der anderen Seite kann durch das geschickte Setzen von geeigneten Bedingungen auf das Energiesignal die Ortsmessung optimiert werden. Als weiterer naheliegender Schritt auf dem Weg zum effizienten Nachweis der hochenergetischen Photonen, bietet sich der Einbau einer zusätzlichen Verstärkungsstufe zum Aufbau eines dreifach-GEM-Detektors an. Damit kann bei höheren Gasdrücken, trotz kleiner werdender maximaler Verstärkung pro GEM, eine ausreichende Gesamtverstärkung erreicht werden. Der Einsatz des Detektors in einem größeren Experiment, in Kombination mit anderen Messapparaturen, rückt somit in greifbare Nähe.
show moreshow less
Medical diagnostics, atomic collision experiments, astro-physical research projects and other applications often require energy, position and time resolving X-ray detectors with a large active volume, in the energy-range
Medical diagnostics, atomic collision experiments, astro-physical research projects and other applications often require energy, position and time resolving X-ray detectors with a large active volume, in the energy-range from 5 to over 500 keV. In the late 60th the first Gas Scintillation Proportional Counter (GSPC) based on the Time Projection Chamber (TPC) concept was developed [Con67, Pol72]. Since then, they have been adapted and used in a wide variety of X-ray spectroscopy applications. In the astronomy GSPCs are used in the energy range up to 120 keV in hard X-ray telescopes. Many high-energy physics experiments require large area detectors with a high spatial and energy reso-lution. One example is a proposed atomic collision experiment, at the GSI in Darmstadt (Germany), where close ion-atom collisions with very heavy, highly charged slow ions like Pb or U are investigated. In these collisions, X-rays are emitted from quasimolecular states of the projectile-target system at small internuclear distances. The radiation in the range from 60 to over 500 keV has to be detected with a good energy and time resolution in coincidence with the scattered particle. Beyond that, it is necessary to efficiently suppress the gamma induced Compton background from nuclear reactions. In medical applications there is also a need for efficient detector systems and because of the required fast timing and good position resolution, the use of GSPCs in SPECT (Single Photon Emission Tomography) and PET (Positron Emission Tomograpy) is discussed. This work reports on the improvements in the readout of a high-pressure xenon filled gas scintillation proportional counter. The advantages of implementing the GEM (gas electron multiplier) into the detection system are manifold. The capability to operate the multipliers in cascade makes it possible to build a multi step amplification system. As it is possible to manu-facture the GEMs with large sensitive area and flexible geometry at low cost, the integrated photosensors can proof to be a reasonable alternative to conventional detector concepts. The photon and ion suppression properties allow the coupling of a photocathode to this micro-structure device. So it can be used as a UV-photon detector inside the pure noble gas envi-ronment. This simplifies the detector setup and improves the long-term stability. Our measurements with an integrated photosensor, consisting of either a semitransparent or an opaque CsI photocathode together with a multi GEM structure, demonstrate the potential of this new design. Simulation calculations help to understand the basic mechanisms of the amplification processes in the Microstructure. Combining this large area integrated photon counter with a micro-channel-plate-based detec-tor and imaging optics for the position readout, makes the whole system a powerful device for the detailed registration of high energy photons.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Jürgen Nickles
URN:urn:nbn:de:hebis:30-0000002876
Referee:Horst Schmidt-Böcking
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/10/01
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2003/06/24
Release Date:2003/10/01
HeBIS PPN:114107041
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $