Untersuchung der verschränkten Bewegung freier Elektronenpaare emittiert aus Ein- und Zweizentren Coulomb-Potentialen in Photoabsorptionsprozessen

Die Doppelionisation von Wasserstoffmolekülen H2 durch einzelne Photonen stellt ein fundamentales und herausforderndes Problem sowohl für die experimentelle als auch für die theoretische Physik dar. In den meisten Fällen
Die Doppelionisation von Wasserstoffmolekülen H2 durch einzelne Photonen stellt ein fundamentales und herausforderndes Problem sowohl für die experimentelle als auch für die theoretische Physik dar. In den meisten Fällen kann dabei die elektronische Bewegung von der nuklearen Dynamik entkoppelt werden (Born-Oppenheimer Näherung). Aus diesem Grund kann man auch den molekularen Fragmentationsprozess als eine Emission eines Dielektrons aus einem nuklearen Zweizentren-Coulomb-Potential beschreiben. Die vorliegende Arbeit befasst sich mit der Photodoppelionisation (PDI) von molekularem Wasserstoff durch einzelne, linear polarisierte Photonen mit einer Energie von 75 eV. Dieses Szenario wird verglichen mit der Photodoppelionisation von Heliumatomen (siehe [Bri00] für einen umfassenden Überblick). In diesem Versuch wurde die Rückstoßionenimpulsspektroskopie-Methode (COLd Target Recoil Ion Momentum Spectroscopy COLTRIMS) benutzt, um alle Fragmente der Reaktion auf ortsauflösende Vielkanalglasplatten(Multi-Channel-Plate MCP)-Detektoren mit Verzögerungsdrahtauslese (delay-line anode) abzubilden. Dabei wurden die Mikropartikel durch elektrische und magnetische Felder geführt. In einer Messung wurde das Rückstoßionenspektrometer mit gepulster Extraktionsspannung betrieben, um das Dielektron und die Stellung der molekularen Achse mit guter Impulsauflösung gleichzeitig vermessen zu können. In einer weiteren Messung kam ein neuartiges Detektorsystem mit hexagonaler Verzögerunsdrahtanode zum Einsatz, die in der Lage war, beide Elektronen, die in sehr kurzen Zeitabständen auf dem Detektor eintrafen, ohne Totzeitverluste in Koinzidenz mit den nuklearen Fragmenten ortsauflösend zu registrieren. Aus den Flugzeiten und Auftrefforten der Teilchen der beiden Datensätze konnten die Impulse des Vierteilchenendzustandes generiert werden. Dies stellt die Messung des Betragsquadrats der quantenmechanischen Wellenfunktion im Impulsraum dar. Aus diesen Größen konnten auch die azimutalen und polaren Winkelverteilungen in Referenz zum Polarisationsvektor des einfallenden Lichts bestimmt werden. Basierend auf der axialen Rückstoßnäherung konnten so zum ersten Mal hochdifferentielle Wirkungsquerschnitte (QDCS und höher) des Vierkörper-Problems für eine raumfeste Molekülachse gemessen werden. Unter Ausnutzung der Reflexions-Näherung war sogar der internukleare Abstand des Moleküls zum Zeitpunkt der Photoabsorption zugänglich. Man findet markante Übereinstimmungen mit der PDI von Heliumatomen. Das Dielektron wird vorwiegend entlang des Polarisationsvektors emittiert und koppelt an das Schwerpunktssystem (Center-of-Mass CM) der nuklearen Partikel, die in einer Coulomb-Explosion fragmentiern. Etwa 72.5 % der Anregungsenergie der beiden Elektronen geht in deren Relativbewegung. Wie bei der Ionisation von Heliumatomen bestimmt die Elektron-Elektron Wechselwirkung zusammen mit diversen Auswahlregeln (siehe [Wal00c]) die Form der polaren Winkelverteilung. In der azimutalen Ebene (die Ebene, die senkrecht zum Polarisationsvektor des Lichts angeordnet ist) erkennt man den attraktiven Einfluss des nuklearen Zweizentren-Potentials, was zu einer Abweichung von der Zylindersymmetrie um die Achse des elektrischen Feldvektors des Lichts führt, wie sie bei niedrigeren Photonenenergien vorzufinden ist (siehe [Dör98b]). In dieser Ansicht tendieren langsame Elektronen dazu, entlang der Molekülachse emittiert zu werden. Es können der sogenannte Auffülleffekt der Knotenstruktur und die vergrößerten Zwischenwinkel in der Polarwinkelverteilung der Elektronen in Form einer Zweikeulenstruktur verifiziert werden (siehe [Red97, Wig 98]). Die Ergebnisse bestätigen den Modellansatz von J. Feagin (siehe [Fea98]), der den Zusammenbruch einer atomaren Auswahlregel, die auf einem Konus wirkt, für den molekularen Fall vorhersagt. Diese Auswahlregel reduziert sich auf eine Knotenlinie, die aufgrund der endlichen Öffnungswinkel des Experiments aufgefüllt wird. Es gibt Hinweise, dass die Verringerung des elektronischen Zwischenwinkels eine Funktion der Stellung der Molekülachse ist, d.h. der kohärenten Überlagerung der beiden möglichen Endzustände mit S- und ?-Symmetrie. Die Ergebnisse der Wannier-Theorie vierter Ordnung nach T. Reddish und J. Feagin (siehe [Red99]) zeigen eine gute Übereinstimmung mit den experimentell gewonnen Daten, zumindest solange die beiden Elektronen den gleichen kinetischen Energiebetrag erhalten. Im Gegensatz dazu bewertet die hochkorrelierte 5C-Theorie nach M. Walter et al. (siehe [Wal99]) den Einfluss des attraktiven nuklearen Zweizentren-Potentials zu hoch. Vorläufige Ergebnisse einer CCC-Rechnung von A. Kheifets et al. (siehe [Khe02]) zeigen eine sehr akkurate Übereinstimmung mit den gemessenen Winkelverteilungen. Minimiert man die Elektron-Elektron Wechselwirkung, indem man eine rechtwinklige Emission der beiden Elektronen fordert (dies kommt einer Ionisation eines H2 +-Ions gleich), so findet man keine starken Fokussierungseffekte vor, wie man sie von Ionisationsprozessen von N2 und CO her kennt (siehe [Lan01, Web01b, Jah02a und Web02]). Stattdessen beobachtet man die Emission eines langsamen Elektrons auf dem nuklearen Sattelpunktspotential, wie man es nach einer halbklassischen Beschreibung erwarten kann. Zusätzlich ist eine hochstrukturierte Winkelverteilung zu beobachten, die auf höhere Drehimpulsbeiträge schliessen lässt (vergleichbar der Parametrisierung bei der PDI von Heliumatomen nach L. Malegat et al., siehe [Mal97d]). Die Verteilung ist sehr sensitiv auf die Energie der Elektronen und die Orientierung der Molekülachse, was weder angemessen durch auslaufende, ebene Wellen noch durch die 5C-Theorie beschrieben werden kann. Für diese Ereignisse erzwingen große internukleare Abstände eine Emission der Elektronen entlang des Polarisationsvektors, während für kleine Abstände die Elektronen vorwiegend rechtwinklig zur Molekülachse ausgesendet werden. Anhand dieser Tatsachen kann man auf einen merklichen Einfluss des Anfangszustands auf die Winkelverteilung der Elektronen zurückschließen. Das ganze Szenario ändert sich sobald man die Elektron-Elektron Wechselwirkung wieder "einschaltet", indem man fordert, dass die Fragmentation in einer Ebene stattfindet. Hier bestimmt die Relativbewegung der beiden Elektronen die Form der Wirkungsquerschnitte. Es zeigen sich nur geringfügige Änderungen in Abhängigkeit zum internuklearen Abstand. Es kann aber teilweise eine dreifache Keulenstruktur ausgemacht werden. Diese Substruktur ändert ihre Amplitude und Richtung als Funktion des Molekülabstandes. Eine direkte Emission entlang des Polarisationsvektors scheint dabei verboten zu sein. In dieser Darstellung zeigt das elektronische Emissionsmuster einen sehr heliumähnlichen Charakter für kleine Bindungslängen. Für größere Abstände der Kerne werden langsame Elektronen deutlich unter einem Zwischenwinkel von 180° (back-to-back-emission) gegen das schnelle Referenzelektron emittiert. Referenzen: [Bri00] J.S. Briggs et al., J. Phys. B: At. Mol. Opt. Phys., 33, (2000), S. R1 [Dör98b] R. Dörner et. al., Phys. Rev. Lett., 81, (1998), S. 5776 [Fea98] J. Feagin, J. Phys. B: At. Mol. Opt. Phys., 31, (1998), S. L729 [Jah02a] T. Jahnke et. al., Phys. Rev. Lett., 88, (2002), S. 073002 [Khe02] A. Kheifets, private Mitteilung, (2002) [Lan01] A. Landers et al., Phys. Rev. Lett., 86, (2001), S. 013002 [Mal97d] L. Malegat et al., J. Phys. B: At. Mol. Opt. Phys., 30, (1997), S. 251 [Red97] T. Reddish et al., Phys. Rev. Lett., 79, (1997), S. 2438 [Red99] T. Reddish et al., J. Phys. B: At. Mol. Opt. Phys., 32, (1999), S. 2473 [Wal00c] M. Walter et al., Phys. Rev. Lett., 85, (2000), S. 1630 [Wal99] M. Walter et al., J. Phys. B: At. Mol. Opt. Phys., 32, (1999), S. 2487 [Web01b] Th. Weber et al., J. Phys. B: At. Mol. Opt. Phys., 34, (2001), S. 3669 [Web02] Th. Weber et al., Phys. Rev. Lett., (2002), eingereicht zur Veröffentlichung [Wig98] J.P. Wightman et al., J. Phys. B: At. Mol. Opt. Phys., 31, (1998), S. 1753
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Thorsten Weber
URN:urn:nbn:de:hebis:30-0000002742
Referee:Reinhard Dörner
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/08/22
Year of first Publication:2003
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2003/05/05
Release Date:2003/08/22
SWD-Keyword:Heliumatom ; Wasserstoffmolekül ; Photoabsorption ; Elektronenpaar ; Entangled state
HeBIS PPN:113291701
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $