Backbone and methyl assignment of bacteriorhodopsin incorporated into nanodiscs

  • Resonance assignments are challenging for membrane proteins due to the size of the lipid/detergent-protein complex and the presence of line-broadening from conformational exchange. As a consequence, many correlations are missing in the triple-resonance NMR experiments typically used for assignments. Herein, we present an approach in which correlations from these solution-state NMR experiments are supplemented by data from 13C unlabeling, single-amino acid type labeling, 4D NOESY data and proximity of moieties to lipids or water in combination with a structure of the protein. These additional data are used to edit the expected peaklists for the automated assignment protocol FLYA, a module of the program package CYANA. We demonstrate application of the protocol to the 262-residue proton pump from archaeal bacteriorhodopsin (bR) in lipid nanodiscs. The lipid-protein assembly is characterized by an overall correlation time of 44 ns. The protocol yielded assignments for 62% of all backbone (H, N, Cα, Cβ, C′) resonances of bR, corresponding to 74% of all observed backbone spin systems, and 60% of the Ala, Met, Ile (δ1), Leu and Val methyl groups, thus enabling to assign a large fraction of the protein without mutagenesis data. Most missing resonances stem from the extracellular half, likely due intermediate exchange line-broadening. Further analysis revealed that missing information of the amino acid type of the preceding residue is the largest problem, and that 4D NOESY experiments are particularly helpful to compensate for that information loss.
Metadaten
Author:Laurens Kooijman, Philipp Ansorge, Matthias Schuster, Christian Baumann, Frank LöhrORCiD, Simon JurtORCiDGND, Peter GüntertORCiDGND, Oliver ZerbeORCiDGND
URN:urn:nbn:de:hebis:30:3-535525
DOI:https://doi.org/10.1007/s10858-019-00289-7
ISSN:1573-5001
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/31754899
Parent Title (English):Journal of biomolecular NMR
Publisher:Springer Science + Business Media B.V
Place of publication:Dordrecht [u. a.]
Document Type:Article
Language:English
Year of Completion:2019
Date of first Publication:2019/11/21
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2020/05/13
Tag:Membrane protein; Nanodisc; Resonance assignment; Solution-state NMR
Volume:74
Issue:1
Page Number:16
First Page:45
Last Page:60
Note:
Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
HeBIS-PPN:46597774X
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Wissenschaftliche Zentren und koordinierte Programme / Zentrum für Biomolekulare Magnetische Resonanz (BMRZ)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0