Strukturbildung in supersymmetrischer kalter dunkler Materie auf kleinsten Skalen

Die auf dem ACDM-Modell beruhenden numerischen Simulationen der gravitativen Strukturbildung sind auf Skalen M >> 10 hoch 10 M sehr erfolgreich, insbesondere konvergieren die Verfahren hinsichtlich des vorhergesagten Mas
Die auf dem ACDM-Modell beruhenden numerischen Simulationen der gravitativen Strukturbildung sind auf Skalen M >> 10 hoch 10 M sehr erfolgreich, insbesondere konvergieren die Verfahren hinsichtlich des vorhergesagten Masseanteils der Halos an der Gesamtmasse von Galaxien. Jedoch konvergieren die Simulationen nicht bezüglich der lokalen Überdichten von CDM in den Halos, vielmehr setzt sich gravitative Strukturbildung auf immer kleinere Skalen fort. Numerisch kann keine Massen-Schwelle berechnet werden, unterhalb derer keine CDM-Strukturen mehr gravitativ gebildet werden. Die Kenntnis der lokalen Überdichten in den CDM-Wolken und die Verteilung der CDM-Wolken ist jedoch für Experimente zum direkten und indirekten Nachweis von CDM-Teilchen essentiell. Aus den lokalen Überdichten folgen für Experimente zum direkten Nachweis die einfallende Stromdichten der CDM-Teilchen und für Experimente zum indirekten Nachweis die Stromdichte der Annihilationsprodukte. Außerdem können die lokalen Überdichten als Gravitationslinsen wirken. In dieser Arbeit werden Massen Schwellen analytisch berechnet, unterhalb derer akustische Störungen in CDM nicht mehr zur gravitativen Strukturbildung beitragen können. Das Massen-Spektrum von lokalen Überdichten ist nach unten durch zwei unterschiedliche Mechanismen beschränkt: (1) Während der kinetischen Entkopplung formieren sich Nichtgleichgewichtsprozesse, die sich kollektiv als Reihungsphänomene konstituieren. Im lineare Regime sind dies die Volumenviskosität, die Scherungsviskosität und die Wärmeleitung. Die dissipativen Prozesse deponieren Energie und Impuls der akustischen Störungen in die Ebene senkrecht zur Ausbreitungsrichtung der Störungen und schmieren diese so aus. (II) Nach dem kinetischen Entkopplungsprozeß strömt CDM frei auf Geodäten. Dies ermöglicht einen Strom von Teilchen von überdichten in unterdichte Regionen, so daß die Amplituden der lokalen Überdichten weiter gedämpft werden. Die lokalen Transportkoeffizienten in (1) werden durch einen legitimen Vergleich von hydrodynamischer und kinetischer Beschreibung schwach dissipativer Prozesse gewonnen. Dissipative Prozesse induzieren eine Dämpfungsmasse Mc ungefähr gleich 10 hoch minus 9 M in SUSY-CDM und beschränken damit das Spektrum akustischer Störungen in SUSY-CDM. Freies Strömen (II) von CDM-Teilchen auf Geodäten induziert eine weitere Dämpfungsmasse M fs ungefähr gleich 10 hoch minus 6 M in SUSY-CDM, wobei das berechnete M d als Anfangswert dient. Die berechneten Schwellen liefern konsistente Schranken für numerische Simulationen, die weit unterhalb des momentanen numerischen Auflösungsvermögens liegen. Weiterhin folgt aus den Schwellen die Masse der ersten rein gravitativ gebundenen CDM-Wolken. Aus diesen bilden sich im Rahmen der hierarchischen Strukturbildung größere Substrukturen bis hin zu den heute vorhandenen CDM-Halos.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Stefan Josef Hofmann
URN:urn:nbn:de:hebis:30-0000002405
Referee:Horst Stöcker
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/07/10
Year of first Publication:2002
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2002/12/16
Release Date:2003/07/10
HeBIS PPN:11249904X
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $