Ladungsträgertransportdynamik in CVD-Diamantschichten und mikroelektronischen Bauelementen untersucht mit einem fein fokussierten Ionenstrahl : Anwendungsmöglichkeiten einer Schwerionenmikrosonde in der Materialforschung

Im Rahmen dieser Promotionsarbeit wurden fünf verschiedene Experimente mit der Schwerionen-Mikrosonde der GSI durchgeführt. Vier dieser Experimente waren erfolgreich, bei einem Experiment wurden nicht die erhofften Ergeb
Im Rahmen dieser Promotionsarbeit wurden fünf verschiedene Experimente mit der Schwerionen-Mikrosonde der GSI durchgeführt. Vier dieser Experimente waren erfolgreich, bei einem Experiment wurden nicht die erhofften Ergebnisse erzielt. Alle Experimente haben Ziele und Fragestellungen verfolgt, die vornehmlich mit einer Ionen-Mikrosonde bearbeitet werden können. Es wurde gezeigt, dass durch die Anwendung fein fokussierter Ionenstrahlen physikalische und technische Probleme im Mikrometerbereich sehr effizient und erfolgreich aufgeklärt werden können. Die hohe örtliche Auflösung der Mikrosonde in Verbindung mit den bekannten auf Ionenstrahlen basierenden Analysemethoden ermöglicht den Zugriff auf Informationen, die auf anderem Wege gar nicht oder nur schwer zugänglich sind. Das erste der fünf Experimente an der Mikrosonde untersuchte die Eigenschaften von polykristallinem CVD Diamant, bei der Verwendung dieses Materials als Detektor für Schwerionen. Der große Nachteil dieses Detektormaterials ist die geringe Fähigkeit, im Detektor erzeugte Ladungsträger verlustfrei zu den Elektroden zu transportieren, um sie dort zu sammeln. Häufig werden bei diesem Transportprozess vom Entstehungsor t der Ladungsträger zu den Elektroden über 90 % der ursprünglich vorhandenen Ladungsträger von Ladungsträgerfallen im Diamantmaterial eingefangen. Es bestand der starke Verdacht, dass diese Fallen vorwiegend in den Korngrenzen zwischen den Diamanteinkrista llen lokalisiert sind. Aus diesem Verdacht begründete sich die Hoffnung, dass die Einkristalle im CVD Diamant ein wesentlich besseres Ladungssammlungsverhalten zeigen würden. Da die Ionenmikrosonde einen Ionenmikrostrahl mit einem lateralen Fokusdurchmesser von ca. 0,5 µm über eine Targetfläche von 1 x 1 mm² rastern kann und dabei Punkt für Punkt die Reaktion des Targetmaterials nachweisen kann, ist sie das geeignete Werkzeug zur Untersuchung von Ladungssammlungsprozessen im Bereich der Einkristalle und der Korngrenzen. Bei der Auswertung der Ergebnisse des Experiments ist aufgefallen, dass man für das CVD Diamantmaterial innerhalb der Ionenbestrahlung zwei verschiedene Zustände unterscheiden muss. Ein unbestrahlter CVD Diamant verhält sich in Bezug auf die Ladungssammlungs- eigenschaften wesentlich anders als ein bestrahlter CVD Diamant, der schon eine gewisse Ionendosis akkumuliert hat. Beim unbestrahlten Diamant ist zu beobachten, dass sowohl in den Einkristallen als auch in den Korngrenzen sehr effektive Ladungsträge rfallen existieren. Die generelle Aussage, dass Diamanteinkristalle eine bessere Ladungssammlung zeigen, kann hier nicht bestätigt werden. Es konnte aber gezeigt werden, dass es, im etwa 300 x 350 µm großen Scannfeld, Bereiche mit sehr guten Ladungssammlungseigenschaften (Effizienz über 90 % im Maximum der Verteilung) gibt und in unmittelbarer Nähe Bereiche mit geringster Ladungssammlungs- effizienz (etwa 8 % im Maximum der Verteilung) existieren. Es konnte nicht geklärt werden, ob diese Bereiche aus Einkristallen bestehen oder sich über Korngrenzen ausdehnen. Die beobachtete 90%ige Ladungssammlungseffizienz ist jedoch ein eindeutiger Nachweis der Möglichkeit, die Detektoreigenschaften dieses Materials wesentlich verbessern zu können, wenn es gelingt, die Besonderheiten dieses hocheffizienten Bereichs aufzuklären. CVD Diamantdetektoren, die schon eine gewisse Ionendosis akkumuliert haben, werden auch als gepumpte Detektoren bezeichnet. Das Pumpen des Detektors kann dabei auch durch andere Formen der Energiezufuhr, beispielsweise mit Hilfe eines Lasers erfolgen, wichtig ist nur, dass eine große Zahl der Ladungsträgerfallen mit Ladungsträgern gefüllt sind. Da diese Fallen im CDV Diamant relativ tief sind, werden gefüllte Fallen nicht schnell entleert und sie stören, so lange sie gefüllt sind, die Ladungssammlung nicht mehr. Die Ladungs- sammlungseffizienz gepumpter Diamantdetektoren verbessert sich sehr stark im Vergleich zum ungepumpten Material. Das Maximum der Verteilung des Ladungssammlungsspektrums verschob sich von etwa 15 % Effizienz beim ungepumpten Detektor zu mehr als 50 % Effizienz beim gepumpten Detektor gemittelt über das gesamte Scannfeld. Bei der Betrachtung des Einflusses der Korngrenzen im gepumpten Material konnte festgestellt werden, dass die Einkristalle nun tatsächlich wesentlich weniger zum Verlust der Ladungsträger beitragen als die Korngrenzen. Die Korngrenzen zeichneten sich beim gepumpten CVD Diamant deutlich als dominante Bereiche des Ladungsträgerverlustes ab. Somit haben wir die bestehende Vermutung über den dominierenden Ladungsträgereinfang in den Korngrenzen für den gepumpten CVD Diamanten bestätigen können, beim ungepumpten Material hingegen verwerfen müssen. Eine weitere Aufklärung der Unterschiede zwischen den beiden Zuständen wür de hier zu einem besseren Verständnis der Vorgänge führen. Zudem wurde am CVD Diamant eine Hochdosisbestrahlung vorgenommen, bei der bestimmt werden sollte ab, welcher Ionendosis das Material soweit geschädigt ist, dass eine Trennung der Detektorsignale von den Rauschsignalen nicht mehr möglich ist. Für einen 8,3 MeV/u 12C-Strahl war diese Trennung ab einer Dosis von 8,0 x 1013 Ionen/cm² nicht mehr möglich, was bedeutet, dass der Detektor hier seine Verwendbarkeit verliert. Eine weitere Gruppe von drei Experimenten befasste sich mit der Wirkung von schnellen, schweren Ionen auf Halbleiterbauelemente. Diese anwendungsorientierten Experimente sollten Ursachen für das Fehlverhalten mikroelektronischer Bauelemente bei Ionentreffern an bestimmten Orten und zu bestimmten Zeitpunkten untersuchen, beziehungsweise Grundlagen für die theoretische Betrachtung der Vorgänge liefern. Beim ersten der drei Experimente wurde das Auftreten von Single Event Upsets in Verbindung mit Single Event Latchups in SRAM Bausteinen untersucht. Die Latchups werden bei den üblichen Testverfahren durch einen Spannungsabfall an einem externen Widerstand in der Versorgungsleitung erkannt. Mit Hilfe der Mikrosonde wurde nachgewiesen, dass diese Methode der Latchupdetektion unzureichend sein kann. Da die internen Versorgungsleitungen in der Halbleiterstruktur selber Widerstände bilden, kann der Latchup am äußeren Widerstand unter bestimmten Bedingungen nicht erkannt werden. Hier spielt die Länge der integrierten Versorgungsleitung eine wesentliche Rolle. Die bild- gebenden Verfahren der Mikrosonde bei der simultanen Messung von Latchups und Upsets können hier Latchups entdecken, die im üblichen Testverfahren nicht erkennbar waren. Das zweite dieser drei Experimente hatte das Ziel, die Upsetempfindlichkeit einer getakteten CMOS- Struktur im Bereich der Schaltflanken zu bestimmen. Hierzu wurden die Schaltzeit- punkte des ICs mit dem vom UNILAC gelieferten Ionenstrahl synchronisiert. Einzelne Ionen trafen den Schaltkreis nur innerhalb eines Zeitfensters von 2 nsec um die Schaltflanke. Da der getaktete integrierte Schaltkreis im Bereich der Schaltflanken besonders empfindlich auf die vom Ion erzeugten zusätzlichen Ladungsträger reagiert, sollten die Upsetwahrscheinlichkeiten innerhalb des Schaltprozesses mit möglichst hoher zeitlicher Auflösung vermessen werden. Die Bestimmung der Trefferzeitpunkte mit einer zeitlichen Genauigkeit von 1 ns oder besser brachte jedoch eine Vielzahl von Problemen mit sich, die letztlich dazu führten, dass dieses Experiment nicht erfolgreich abgeschlossen werden konnte. Auf Grund seiner hohen technischen Bedeutung wurde es in dieser Arbeit aber beschrieben und sollte nach der Verbesserung der Treffererkennung erneut durchgeführt werden. Es wäre das erste Experiment, in dem die Empfindlichkeit einer CMOS- Struktur gegen Ionenstrahlen mit hoher örtlicher und zeitlicher Auflösung gemessen wird. Das dritte Experiment dieser Serie befasste sich mit der für theoretische Vorhersagen wichtigen Größe des elektronischen Durchmessers der Ionenspur. Aus der vom Schwerion erzeugten Spur breitet sich eine elektronische Stoßkaskade aus. Diese freien Ladungsträger können ungewollte Schaltvorgänge in integrierten Schalkreisen auslösen. Da die Integrationsdichte in modernen Baugruppen immer höher wird, kann die vom Ion erzeugte Spur aus freien Ladungsträgern mehrere Transistoren beeinflussen. Die Ausdehnung dieser Spur kann nicht mehr als vernachlässigbare Größe eingestuft werden. Um den Durchmesser der Spur zu bestimmen, wurde ein fein fokussierter 5,9 MeV/u Nickel-Strahl über eine Probe aus Mikrostreifen gerastert, und die in den Streifen gesammelten Ladungssignale wurden gemessen. Trotz einiger Probleme mit der kapazitiven Kopplung von Signalen zwischen den Streifen und dem Substrat und de n Streifen untereinander konnte der Durchmesser der elektronischen Spur bei diesem Test zu etwa 1,2 µm bestimmt werden. Es sollte der Versuch unternommen werden, diesen ersten experimentellen Wert durch weitere verfeinerte Messungen zu bestätigen und vor allem sollte versucht werden, das Dichteprofil der Elektronen in der Ionenspur mit dieser Technik zu bestimmen. Diese Informationen wären von großem Wert für theoretische Modelle zur Empfindlichkeit von integrierten Elektroniken gegen die Effekte einzelner Ionen. Im fünften und letzten Experiment dieser Arbeit wurde die Ionen-Mikrosonde als Werkzeug zur Strukturierung eines Hochtemperatur Dünnfilm Supraleiters eingesetzt. In der sogenannten Shubnikov-Phase können magnetische Flussquanten in den Supraleiter eindringen, obwohl der Zustand der Supraleitung noch vorhanden ist. Diese Flussquanten können durch säulenartige korrelierte Defekte im Supraleiter gebunden werden. Die Spuren schwerer Ionen bilden solche kolumnaren Defekte, die mit Hilfe der Mikrosonde aufgeprägt werden können. Da bei dieser Strukturierung eine hohe Defektdichte erforderlich war, konnte aus Zeitgründen eine Strukturierung mit dem schreibenden Ionenstrahl nicht realisiert werden. Stattdessen wurde eine Schlitzmaske verwendet, die mit Hilfe der Mikrosonde verkleinert auf der Oberfläche des Supraleiters abgebildet wurde. Auf diese Weise wur de dem Supraleiter eine Defektstruktur aus Stegen, die in einem bestimmten Winkel orientiert waren, aufgeprägt. An dem so erzeugten Supraleiter wurden dann an der Universität Mainz die elektrischen Transporteigenschaften des Materials unter dem Einfluss eines gepinnten magnetischen Feldes gemessen. Da die erwarteten Effekte aus dem Pinning der magnetischen Flussquanten erst dann eine messbare Größe annehmen, wenn dem Supraleiter Defektstrukturen in der Größenordnung von einigen µm aufgeprägt werden, ist auch hier die Ionen-Mirkrosonde das einzige verfügbare Instrument für diese Aufgabe. Mit dieser Arbeit wurde deutlich gemacht, dass eine Ionen-Mikrosonde ein vielseitig einsetzbares Instrument ist, das vor allem aufgrund der hohen Bedeutung von miniaturisierten Systemen in der modernen Forschung und Technik ein hohes Verwendungspotential besitzt. Alle hier vorgestellten Experimente wären ohne den Einsatz der Mikrosonde nicht durchführbar gewesen. Neben diesen Experimenten werden an der GSI noch eine Reihe weiterer Experimenten zum Beispiel im Bereich der Biophysik bearbeitet, die ihrerseits von der einzigartigen Möglichkeit der µm-genauen Platzierung schwerer Ionen profitieren.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Michael Schlögl
URN:urn:nbn:de:hebis:30-0000000843
Referee:Horst Schmidt-Böcking
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/05/16
Year of first Publication:2001
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2001/12/21
Release Date:2003/05/16
SWD-Keyword:CVD-Verfahren ; CVD-Verfahren ; Diamant ; Diamant ; Halbleiterbauelement ; Mikrosonde ; Schwerionenstrahl; Schwerionenstrahl ; Strahlenschaden
HeBIS PPN:105392618
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $