Regulation des CFTR

In der vorliegenden Arbeit wurde die Regulation des humanen CFTR an isolierten Makropatches von Xenopus-Oozyten untersucht. Die inside-out-Konfiguration ermöglicht den einfachen Zugang zu den zytosolischen Domänen, welch
In der vorliegenden Arbeit wurde die Regulation des humanen CFTR an isolierten Makropatches von Xenopus-Oozyten untersucht. Die inside-out-Konfiguration ermöglicht den einfachen Zugang zu den zytosolischen Domänen, welche die CFTR- Aktivität steuern. Daher ist es mit dieser bewährten Methode möglich, die Interaktion des CFTR mit Nukleotiden, insbesondere unter dem Einfluss der Phosphorylierung, weitergehend zu charakterisieren. Die Strom-Spannungskennlinie des ATP-induzierten CFTR-Chloridstroms weicht bei zunehmendem Haltepotenzial von dem Verlauf ab, der aufgrund der Goldmann- Hodgkin-Katz-Gleichung zu erwarten ist. Dies weist auf einen hemmenden Einfluss des in der Badlösung vorhandenen Aspartats hin. Die transienten Ströme bei schnellen Chloridkonzentrationswechseln bestätigen diese Hemmung und legen einen inhibitorischen Einfluss auf das CFTR-Gating nahe. Die Koexpression des CFTR mit dem Fusionsprotein Bakteriorhodopsin-PKA katalytische Untereinheit (BR-PKA) erm glicht die Kanalaktivierung durch einfache ATP-Zugabe. Es wurde gezeigt, dass diese Koexpression die apparente Affinität für MgATP erhöhte. Eine naheliegende Vermutung ist, dass diese Affinitätszunahme durch einen erhöhten Phosphorylierungsgrad hervorgerufen wird, was durch die Messungen mit dem Proteinkinaseinhibitor PKI unterstützt wird. Durch die Aktivierung der koexprimierten membrangebundenen cGMP-abhängigen Proteinkinase II (cGKII) kann der CFTR sowohl in Ganzzellmessungen, als auch in Makropatches phosphoryliert werden. Der Vergleich der ATP-Konzentrationsabhängigkeiten des CFTR unter permanenter (KM = 29 µM) und vorübergehender cGKII-Stimulierung (KM = 64 µM) belegt eine Abnahme des apparenten KM bei kontinuierlicher Kinaseaktivität und somit vermutlich erhöhter Phosphorylierung. Die Öffnungs- und Schlieflkinetik des Kanals wird durch diese permanente Kinaseaktivität nicht beeinflusst. Die zeitabhängige Abnahme des CFTR-Chloridstroms, der Rundown, kann nicht durch eine permanente Proteinkinaseaktivität von BR-PKA oder cGKII aufgehoben werden. Die Signalabnahme tritt auch unter Bedingungen auf, bei denen mögliche vorhandene Phosphatasen (v.a. PP2C) inaktiv sind. Daraus folgt, dass der Rundown des CFTR nicht nur durch Dephosphorylierung verursacht wird. Für Einzelkanalmessungen wird eine Verringerung der Offenwahrscheinlichkeit des epithelialen Natriumkanals ENaC durch den aktivierten CFTR beschrieben. Die im Rahmen dieser Arbeit durchgeführten Makropatchmessungen bestätigen diese Inhibition nicht. Die CFTR- und Natriumkanal-vermittelten Ströme sind, unabhängig von dem Verhältnis der Einzelströme und dem anliegenden Haltepotenzial, generell additiv. Der präphosphorylierte CFTR kann auch durch ATP-Zugabe geöffnet werden, wenn die Badlösung kein Magnesium enthält. Da unter diesen Bedingungen keine ATP- Hydrolyse erfolgen kann, muss eine Kanalaktivierung durch einfache ATP-Bindung möglich sein. Es tritt eine Verringerung der apparenten ATP-Affinität, nicht aber des maximalen Chloridstroms auf, wenn das Magnesium aus der Badlösung entfernt wird (KM[MgATP] 70 µM; KM[ATP]> 1 mM). Die Möglichkeit der nichthydrolytischen Aktivierung wird dadurch bestätigt, dass auch mit dem nicht-hydrolysierbaren ATP- Analog AMP-PNP eine Kanalöffnung erfolgt. Magnesium ist nicht nur an der ATP-Hydrolyse beteiligt, sondern beeinflusst darüber hinaus die Kanalaktivität. Aus den Messungen bei unterschiedlichen freien Mg2 - Konzentrationen in der Badlösung geht ein inhibitorischer Einfluss dieses Kations auf den stationären Maximalstrom und ein komplexer Einfluss auf die Öffnungskinetik hervor. Die Walker-A und die Walker-B-Dom nen von Nukleotidbindestellen sind an der Bindung und Hydrolyse von MgATP in ATPasen beteiligt. Mit CFTR- Mutanten, in denen die Walker-A (K1250A), bzw. die Walker-B (D1370N)-Domäne der zweiten Nukleotidbindestelle (NBD2) mutiert sind, kann die Beteiligung der NBD2 an der Kanalöffnung belegt werden. Die langsame K1250A-Mutante öffnet in Abwesenheit von Magnesium nicht. Dagegen ist sowohl die Öffnungs- und Schließkinetik, als auch die ATP-Affinität der D1370N-Mutante mit der des Wildtyps vergleichbar, weist aber im Gegensatz zu diesem keinerlei Magnesiumabhängigkeit auf. Auf Grundlage dieser Daten wird ein Modell vorgeschlagen, in dem alternativ zu dem hydrolytischen Öffnungszyklus, in dem zunächst eine ATP-Hydrolyse an der NBD1 erfolgt, auch die nichthydrolytische Öffnung über die NBD2 möglich ist.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Tanjef Szellas
URN:urn:nbn:de:hebis:30-0000000785
Referee:Georg Nagel
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/05/16
Year of first Publication:2002
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2002/06/05
Release Date:2003/05/16
HeBIS PPN:105347345
Institutes:Biochemie und Chemie
Dewey Decimal Classification:610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $