Emergence of modular and long-range correlated activity in the developing neocortex

  • Cortical circuits exhibit highly dynamic and complex neural activity. Intriguingly, cortical activity exhibits consistently two key features across observed species and brain areas. First, individual neurons tend to be co-active in spatially localized domains forming orderly arranged, modular layouts with a typical spatial scale. Second, cortical elements are correlated in their activity over large distances reflecting long-range network interactions distributed over several millimeters. Currently, it is unclear how these two fundamental properties emerge in the early developing cortical activity. Here, I aim to fill this gap by combining analyses of chronic imaging data and network models of developing cortical activity. Neural recordings of spontaneous and visually evoked activity in primary visual cortex of ferrets during their early cortical development were obtained using in vivo 2-photon and widefield epi-fluorescence calcium imaging. Spontaneous activity was used to probe the early state of cortical networks as its spatiotemporal organization is independent of a stimulus-imposed structure, and it is already present early in cortical development prior to reliably evoked responses. To assess the mature functional organization of distributed networks in cortex, the tuning of neural responses to stimulus features, in particular to the orientation of an edge-like stimulus, was assessed. Cortical responses to moving gratings of varying orientations form an orderly arranged layout of orientation domains extending over several millimeters. To begin with, I showed that spontaneous activity correlations extend over several millimeters, supporting the assumption of using spontaneous activity to assess distributed networks in cortex. Next, I asked how distributed networks in the mature visual cortex - assessed by spontaneous activity correlations - are related to its fine-scale functional organization. I found that the spatially extended and modular spontaneous correlation patterns accurately predict the fine spatial structure of visually evoked orientation domains several millimeters away. These results suggest a close relation between spontaneous correlations and visually evoked responses on a fine spatial scale and across large spatial distances. As the principles governing the functional organization and development of distributed network interactions in the neocortex remain poorly understood, I next asked how long range correlated activity arises early in development. I found that key features of mature spontaneous activity introduced in this work, including long-range spontaneous correlations, were present already early in cortical development prior to the maturation of long-range, horizontal connections, and the predicted mature orientation preference layout. Even after silencing feed-forward input drive by inactivating retina or thalamus, long-range correlated and modular activity robustly emerged in early cortex. These results suggest that local recurrent connections in early cortical circuits can generate structured long-range network correlations that guide the formation of visually-evoked distributed functional networks. To investigate how these large-scale cortical networks emerge prior to the maturation and elaboration of long-range horizontal connectivity, I examined a statistical network model describing an ensemble of spatially extended spontaneous activity patterns. I found a direct relationship between the dimensionality of this ensemble of activity patterns and the decay of its correlation structure. Specifically, reducing the dimensionality of the ensemble leads to an increase in the spatial range of the correlation structure. To test whether this mechanism could generate a long-range correlation structure in cortical circuits, I studied a dynamical network model implementing a dimensionality reduction mechanism. Based on previous work demonstrating that network heterogeneity reduces the dimensionality of activity patterns, I showed that by increasing the degree of heterogeneity in the network, the dimensionality of the ensemble of activity patterns decreases and in turn their correlations extend over a greater range. A comparison to experimental data revealed a quantitative match between the network model and the observations in vivo in several of the key features of the early cortex including the spatial scale of correlations. Low dimensionality of spontaneous activity thus might provide an organizational principle explaining the observed long-range correlation structure in the early cortex. Finally, I asked whether a network with a biologically plausible architecture can generate modular activity. Several classical models showed that modular activity patterns can emerge via an intracortical mechanism involving lateral inhibition. However, this assumption appears to be in conflict with current experimental evidence. Moreover, these network models were not experimentally tested, so far. Here, I showed by using linear stability analysis that spatially localized self-inhibition relaxes the constraints on the connectivity structure in a network model, such that biologically more plausible network motifs with shorter ranging inhibition than excitation can robustly generate modular activity. Importantly, I also provided several model predictions to make the class of network models experimentally testable in view of recent technological advancements in imaging and manipulation of cortical circuits. A critical prediction of the model is the decrease in spacing of active domains when the total amount of inhibition increases. These results provide a novel mechanism of how cortical circuits with short-range inhibition can form modular activity. Taken together, this thesis provides evidence that the two described fundamental features of neural activity are already present in the early cortex and shows that activity with those features can be generated in network models with an architecture consistent with the early cortex using basic principles.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Bettina HeinORCiDGND
URN:urn:nbn:de:hebis:30:3-550760
Place of publication:Frankfurt am Main
Referee:Matthias KaschubeORCiDGND, Jochen TrieschORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/06/19
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/05/25
Release Date:2020/07/10
Page Number:220
HeBIS-PPN:466754930
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht