Untersuchungen zur Ablation und Ionenbildung bei matrixunterstützter Laserdesorption-Ionisation (MALDI)

Ziel der vorliegenden Dissertation war es, die initialen Bewegungsparameter von Ionen bei matrixunterstützter Laserdesorption zu bestimmen, um mit deren Kenntnis das Verständnis des Desorptions­ und Ionisationsprozesses 
Ziel der vorliegenden Dissertation war es, die initialen Bewegungsparameter von Ionen bei matrixunterstützter Laserdesorption zu bestimmen, um mit deren Kenntnis das Verständnis des Desorptions­ und Ionisationsprozesses bei MALDI zu verbessern. Die Etablierung einer Meßmethode der initialen Geschwindigkeit von Analytionen sowie die Überprüfung verschiedener experimenteller Parameter führten zur Bestimmung einer großen Zahl von Meßwerten der Startgeschwindigkeit von Ionen unterschiedlicher Masse, Ladung und Substanzklasse bei verschiedenen Matrizes und Präparationsbedingungen (siehe Kapitel 5 und 7). Durch Vergleich dieser Meßwerte ist eine Charakterisierung des Desorptions­ und Ionisationsprozesses bei MALDI möglich. Aufbauend auf diesen Untersuchungen der Startgeschwindigkeit von Ionen wurde ein Desorptions­/Ionisationmodell für MALDI entwickelt (siehe Kapitel 6 und 8). Aus der festen Matrix­/Analytpräparation werden durch den Laserimpuls oberhalb einer kritischen Laserbestrahlung geladene Bruchstücke ("Cluster") freigesetzt. Aus diesen Clustern resultiert nach Abdampfen von ungeladenenen Teilchen, wie zum Beispiel Matrixmolekülen, die Freisetzung von Ionen in der Gasphase. Hierbei kann das Modell der Clusterbildung sehr gut mit dem Desorptionsmodell nach Zhigilei (siehe Kapitel 2.4.1.5) verknüpft werden [Zhi97]. Die Cluster verschiedener Größe werden in der sich ausdehnenden Teilchenwolke transportiert. Sie bewegen sich mit der initialen Geschwindigkeit der expandierenden Teilchenwolke. Dieser Vorgang kann mit dem "Mitgerissen werden" der Biomoleküle (entrainment) [Bea91] bei MALDI korreliert werden: So wird beispielsweise beobachtet, daß die mittlere initiale Geschwindigkeit v 0 der Analytmoleküle im Mittel nie höher ist als die der Matrixmoleküle. Die Schwellbestrahlungsabhängigkeit der Ionisation kann weiterhin mit der Schwellbestrahlung der Ablation, d.h. der kollektiven Ablation von großen Partikeln aus der Matrix­/Analytpräparation, wie sie von Zhigilei in molekulardynamischen Simulationen gefunden wurde, verknüpft werden. Desorption und Ionisation sind somit nicht getrennt voneinander zu betrachten, da während der Desorption die Freisetzung von Ionen erfolgt. Wenn Peptide und Proteine aus Clustern stammen, besitzen die freigesetzten Biomolekülionen die gleiche mittlere Analytionengeschwindigkeit wie die Matrixneutralen [Dre94]. Für kleine Oligosaccharide werden niedrigere Startgeschwindigkeiten detektiert als für Peptide und Proteine. Das kann darauf zurückgeführt werden, daß diese Ionen nicht als vorgeformte Ionen aus Clustern freigesetzt werden. Da die im Rahmen dieser Arbeit untersuchten neutralen Oligosaccharide kationisiert und (im wesentlichen) nicht protoniert im MALDI­Massenspektrum auftreten und bei höheren Verzögerungszeiten eine verstärkte Kationisierung von Oligosacchariden zu beobachten ist, werden diese Teilchen voraussichtlich nach der Desorption in der Gasphase ionisiert (siehe Kapitel 7 und 8). Da Oligosaccharide in die Matrix DHB eingebaut werden, jedoch Kationen zur Ionisation nicht in den Matrixkristallen zur Verfügung stehen, ist anzunehmen, daß neutrale Oligosaccharide aus Clustern mit der gleichen Startgeschwindigkeit wie Peptide und Proteine in der desorbierten Teilchenwolke vorkommen; ihre Ionisation und damit ihre Detektion ist aufgrund der fehlenden Ladung jedoch nicht möglich. Die Ergebnisse der Startgeschwindigkeit von Ionen bei verschiedenen Präparationen verdeutlichen, daß Gasphasenionisation einer der möglichen Wege der Ionisation neben der Freisetzung von Analytionen aus geladenen Clustern ist. Da auch für Peptide und Proteine Kationisierung in der Gasphase auftreten kann, lassen sich auch langsame Molekülionenspezies experimentell feststellen, was mehrere initiale Geschwindigkeits­ komponenten und damit auch ein Ionensignal mit unterschiedlichen Komponenten der Startgeschwindigkeit zur Folge hat. Weiterhin sollte auch unterhalb der Schwelle des Analytionennachweises (und damit der kollektiven Ablationsschwelle gemäß dem breathing sphere­Modell) bei MALDI aufgrund von Verdampfung einzelner Moleküle gefolgt von Ionisation in der Gasphase ein Ionensignal feststellbar sein. Die beobachtete mittlere Startgeschwindigkeit von Analytionen wäre somit eine Mischung aus schnellen, aus Clustern stammenden, und aus langsamen, in der Gasphase ionisierten Teilchen. Eine Komponente kann als prompt ionisierte Komponente mit im wesentlichen massenunabhängiger, konstanter (hoher) initialer Geschwindigkeit verstanden werden. Die zweite Komponente kann durch verzögert auftretende Gasphasenionisation innerhalb des expandierenden Materials erklärt werden, wobei die Analytionen eine geringere Startgeschwindigkeit zeigen. Zusammenfassend (siehe Kapitel 8) wird eine kollektive Ablation von Partikeln und vorgeformten Ionen beim MALDI­Desorptionsprozeß gefolgt von Sekundärreaktionen innerhalb der dichten Teilchenwolke in der Gasphase in der selvedge­Region durch Ionen­ Molekülreaktionen vorgeschlagen, wie es bereits bei dem precursor­Modell für Sekundärionenmassenspektrometrie formuliert wurde [Sun88], [Pac85], [Ben83]. Bezogen auf die Auswahl potentieller Matrizes besitzt das Modell nach wie vor nur eine geringe "Voraussagekraft": Ob eine Substanz als Matrix geeignet ist oder ob sie einen hohen bzw. geringen Grad an metastabiler Fragmentierung für zum Beispiel Peptide oder Proteine zeigt, kann weiterhin nur experimentell bestimmt werden, wobei jedoch eine Charakterisierung mit Hilfe der Startgeschwindigkeit möglich ist. Der Zusammenhang eines Cluster­Desorptions­/Ionisationsmodells mit molekulardynamischen Simulationen nach Zhigilei ermöglicht jedoch eine Beschreibung vieler experimenteller Ergebnisse bei MALDI. Weiterführende Experimente sollen die Verifikation des "Cluster­Modells" der Ionisation zum Ziel haben. Hier ist insbesondere die Untersuchung des Ladungszustandes von Analytmolekülen in festen Matrix­/Analytpräparationen von Bedeutung. Weitere Untersuchungen zur Spektrenqualität bei Matrizes, die keinen Einbau der Analytmoleküle in die Matrixkristalle zeigen, sowie eine eingehende Untersuchung der verschiedenen alternativen Präparationstechniken aus Kapitel 7 sind hierbei geplant.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Matthias Glückmann
URN:urn:nbn:de:hebis:30-0000000289
Referee:Michael Karas
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/05/05
Year of first Publication:2001
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2001/10/18
Release Date:2003/05/05
SWD-Keyword:MALDI-TOF-Massenspektrometrie ; Abtragen ; Ionisation
HeBIS PPN:101475454
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $