Untersuchung der Selbstkompression eines Elektronenstrahls zur Erzeugung hoch geladener Ionen in einer Elektronenstrahlionenquelle

Für Elektronenstrahlionenquellen sind die Stromdichte und die Energie die ausschlag­ gebenden Größen zum Erreichen hoher Ladungszustände. Herkömmliche EBIS/T verwenden ein externes magnetisches Feld zur Kompression des E
Für Elektronenstrahlionenquellen sind die Stromdichte und die Energie die ausschlag­ gebenden Größen zum Erreichen hoher Ladungszustände. Herkömmliche EBIS/T verwenden ein externes magnetisches Feld zur Kompression des Elektronenstrahls. Im Rahmen dieser Dissertation wurde eine ''magnetfeldfreie" EBIS/T realisiert, mit der die Selbstkompression eines teilrelativistischen Elektronenstrahls nachgewiesen werden konnte, womit ein vielversprechender Meilenstein auf dem Weg zu einer Super­EBIS/T mit Energien im Bereich von 300 - 500 keV erreicht wurde. Es wurde eine Apparatur aufgebaut, die es ermöglichte, einen Elektronenstrahl unter verschiedenen Winkeln in die Ionenfalle einzuschießen. Durch numerische Simulationen wurde die Elektronenkanone mit dem Ziel einer möglichst kleinen rückwärtig projizierten Kathode optimiert, um die fokussierbare Stromdichte zu erhöhen. Um sphärische Aberrationen des abbildenden Linsensystems zu korrigieren, wurde die Driftstrecke zwischen Elektronenkanone und Ionenfalle mit ''clearing" Elektroden versehen, die es ermöglichten, einen definierten Kompensationsgrad im Elektronenstrahl einzustellen. Im Anschluß an den Kollektor wurden die Ionen mit einem Sektormagneten analysiert. Zunächst wurde experimentell bestätigt, daß sich sphärische Aberrationen korrigieren lassen, wenn der Elektronenstrahl im Bereich des Linsensystems gezielt partiell kompensiert wird. Mit dem nichtlinearen Kompensationsgrad konnte die defokussierende Kraft der Raumladung gerade so angepaßt werden, daß sie die radial zunehmende Fokussierung der Linse (sphärische Aberration) korrigiert. ''clearing" Elektroden sorgten dafür, daß im Außenbereich des Elektronenstrahls gebildete Ionen den Strahl verließen. Nur der innere Bereich konnte nach Maßgabe der Potentialdifferenz kompensieren. Messungen der Verlustströme an den Elektroden der Ionenfalle zeigten, daß nur mit dieser Kompensation der Elektronenstrahl bei hohen Strahlströmen durch die Ionenfalle transportiert werden konnte. Bei kontinuierlicher Ionenextraktion konnte bei Erhöhung des Gasdrucks in der Ionenquelle ein überproportionales Ansteigen des Ionenstroms gemessen werden. Mit der Annahme konstanter Stromdichte sollte der Ionenstrom lediglich linear steigen. Zusammen mit der gleichzeitigen Reduktion der Verlustströme auf die Fallenelektroden war dies ein erster Hinweis für die Erhöhung der Stromdichte durch zunehmende Kompensation der elektronischen Raumladung im Fallenbereich. Eine genaueres Bild über die Entwicklung der Stromdichte wurde aus Spektren abgeleitet, die bei gepulster Extraktion aufgenommen wurden. In einer Elektronenstrahlionenquelle werden Ionen durch sukzessive Ionisation gebildet. Die Ladungszustandsverteilung der gebildeten Ionen ist proportional zur Dichte der ionisierenden Elektronen und zur Einschlußzeit, der die Ionen dem Elektronenbeschuß ausgesetzt sind. Bei konstanter Stromdichte erreichen aufeinanderfolgende Ladungszustände maximale relative Häufigkeit ungefähr bei einer Verdopplung der Einschlußzeit. Die aufgenommenen Spektren wichen deutlich von diesem Schema ab. Anstelle einer regulären Ladungszustandsentwicklung wiesen die Spektren nach 20ms Einschlußzeit zwei Verteilungen auf. Die erste Verteilung hatte ein Maximum bei Ar 2 , während die zweite ihr Maximum bei Ar 8 hatte. Die höher geladene Verteilung war mit dem Auftreten hoher Ladungszustände bis Ar 12 verbunden. Bei einer weiteren Erhöhung der Einschlußzeit ging die niedrig geladene Verteilung in die hoch geladene über, bis bei 160ms nur noch ein hoch geladenes Spektrum vorhanden war. Ein Vergleich mit Modellrechnungen ergab für niedrig geladene Ionen (3Acm ­2 für Ar 2 bei 20ms Einschluß) eine geringe Stromdichte und einen kontinuierlichen Übergang zu hohen Stromdichten (300Acm ­2 für Ar 12 bei 20ms Einschluß) bei hoch geladenen Ionen. Aufgrund des ''evaporative cooling" sammeln sich hoch geladene Ionen in der Mitte des Elektronenstrahls. Da der Elektronenstrahl von innen nach außen kompensiert, setzt die Selbstkompression innen ein und führt dort zu hohen Stromdichten. Man erhält eine während der Einschlußzeit variierende Stromdichteverteilung im Elektronenstrahl. Eine Aussage über die Häufigkeitsverteilung der Stromdichtewerte gelang über die Wichtung der berechneten Stromdichte mit der Menge an ionischer Ladung, die in den Ladungszuständen vorhanden war. Mit diesen Werten konnten mittlere Stromdichtewerte für den Elektronenstrahl berechnet werden. Es wurde die mittlere Stromdichte für den gesamten Elektronenstrahl und für die beiden Ladungszustandsverteilungen berechnet. Dabei begann die mittlere Stromdichte des Elektronenstrahls mit der Stromdichte der niedrig geladenen Verteilung (13Acm ­2 ; 5ms) und ging bei Erhöhung der Einschlußzeit in die mittlere Stromdichte der hoch geladenen Verteilung über (110Acm ­2 ; 80ms). Das Maximum der mittleren Stromdichte für die hoch geladene Verteilung lag bei 170Acm ­2 für 40ms Einschlußzeit. Nachdem der Elektronenstrahl bei 40ms kompensiert wurde, sanken die mittleren Stromdichten. Dies lag an der nun dominierenden Heizung durch Coulombstöße der Strahlelektronen an den eingeschlossenen Ionen, wodurch deren Ausbeute verringert wurde. Diese Ergebnisse stehen im Einklang mit numerischen Integrationen der Randstrahlgleichung. Dazu wurden Berechnungen für verschiedene Kompensationsgrade und Elektronenstrahlemittanzen durchgeführt. Für Emittanzwerte um 2×10 ­3 cm mrad ergab sich eine gute Übereinstimmung mit den gemessenen Stromdichten. Die Rechnungen bestätigten, daß die Emittanz und der Einschuß des Elektronenstrahls in die Ionenfalle die kritischen Größen sind, um eine Selbstkompression des Elektronenstrahls bei einer Energie von 22keV und 30mA Strahlstrom beobachten zu können. Die in dieser Arbeit untersuchte Selbstkompression des Elektronenstrahls kann genutzt werden, um bei einer XEBIS/T mit Elektronenstrahlenergien größer als 200keV deutlich höhere Stromdichten zu erzielen, als bei heute üblichen EBIS/T. Sie eignet sich deshalb besonders für die Erzeugung höchst geladener schwerer Ionen, weil die angewandte Technik bei kommerziellen Elektronenstrahl­Schweißanlagen industriell ausgereift ist, wohingegen die herkömmlichen EBIS/T weltweit (Livermore, Dubna, Tokio, Freiburg) die gesetzten Erwartungen hinsichtlich der erreichbaren Elektronenenergien bisher verfehlen. Auch für den stets problematischen Einschuß niedrig geladener Ionen, die außerhalb der EBIS/T erzeugt werden, kann die Selbstkompression genutzt werden. Der Elektronenstrahl weist zu Beginn der Ionisierung einen großen Durchmesser auf, wodurch der Einschuß in den Strahl erleichtert wird. Während der Höherionisierung der eingefangenen Ionen komprimiert sich der Elektronenstrahl zu der zum Erreichen höchster Ladungszustände notwendigen Stromdichte dann von selbst.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Michael Mücke
URN:urn:nbn:de:hebis:30-0000000056
Referee:R. Becker
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/04/30
Year of first Publication:2001
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2001/05/22
Release Date:2003/04/30
HeBIS PPN:101228244
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $