Entwicklung und Test von drei MCP-basierten Detektoren für die Atom- und Molekülphysik

Mit der COLTRIMS-Technik können immer kompliziertere Reaktionen untersucht werden, dabei steigt aber die Zahl der zu detektierenden Reaktionsfragmente. Der Nachweis von Ionen ist üblicherweise gut möglich, da die entspre
Mit der COLTRIMS-Technik können immer kompliziertere Reaktionen untersucht werden, dabei steigt aber die Zahl der zu detektierenden Reaktionsfragmente. Der Nachweis von Ionen ist üblicherweise gut möglich, da die entsprechenden Flugzeiten groß sind im Vergleich zur Totzeit der benutzten Detektoren. Elektronen hingegen sind sehr leicht und erreichen den Detektor innerhalb von wenigen 10 ns. Aktuelle Detektoren erlauben aber nur den Nachweis weniger Elektronen und es werden somit neue Detektoren benötigt, um alle Teilchen nachzuweisen. Ziel dieser Arbeit war es also, einen Detektor zu entwickeln, der dies erreicht.
Zu Beginn dieser Monografie wird die COLTRIMS-Technik vorgestellt. Die Experimente mit dieser Messmethode finden hauptsächlich mit einer Laufzeitanode statt. Diese stößt aber bei dem Nachweis von mehreren Teilchen an ihre Grenzen und manche Experimente können nur unvollständig analysiert werden. 
Damit ein neuer Detektor entwickelt werden kann, muss erst verstanden werden, wie die zu detektierenden Teilchen/Signale entstehen und wie ihre Eigenschaften sind. Aus diesem Grund wird das Sekundärteilchen-erzeugende MCP ausführlich vorgestellt. 
Weiterhin gibt diese Arbeit einen umfassenden Überblick über bereits realisierte Anoden. Verschiedene Repräsentanten der fünf Anodenarten (Flächen-, Streifen-/Pixel-, Laufzeit-, Kamera-, sowie Halbleiter-Anode) werden vorgestellt und bewertet.
Mit diesem Wissen konnten drei Ansätze für neue Anoden entwickelt, designt, produziert, getestet und bewertet werden. Alle neu entwickelten Anoden benutzen Leiterplatinen als Basis und werden in derselben Vakuumkammer getestet. Auch wenn die Detektionsprinzipien der drei getesteten Detektoren unterschiedlich sind, so verläuft die Auskopplung, Verarbeitung und Digitalisierung der Signale nach dem gleichen Schema. Außerdem wurden im Rahmen dieser Arbeit diverse Algorithmen entwickelt und programmiert, mit deren Hilfe die Signalauswertung und Positionsbestimmung erfolgt.
Das dritte Kapitel beschreibt die neu entwickelte Draht-Harfen-Anode. Dieser Detektor besteht aus vielen kurzen Drähten die parallel auf Rahmen aus Leiterplatinen gespannt werden. Aus dieser Anode ließ sich im Rahmen dieser Arbeit aber kein funktionsfähiger Detektor entwickeln und es wird empfohlen, diesen Ansatz nicht weiterzuverfolgen.
Im Kapitel über die Pixel-Anode mit Streifenauslese wird ein Ansatz vorgestellt, bei dem die Elektronenwolke von einem Muster aus leitenden Rauten absorbiert wird. Es wurde ein funktionsfähiger Detektor mit MAMA-Verschaltung realisiert. Die aktive Fläche ist mit einem Durchmesser von 50 mm aber zu klein. Eine große Variante der Anode ist in der realisierten Form aber nicht als Detektor geeignet.
Als dritter neuer Detektor wird die Streifen-Laufzeit-Anode beschrieben. Diese besteht aus einem rechteckigen Muster von Pixeln, die in einer Richtung über eine Zeitverzögerung ausgelesen werden. Dieser Ansatz ist sehr vielversprechend und es ließen sich nicht nur einzelne Teilchen nachweisen, sondern auch beim Aufbruch eines D2+-Moleküls konnten beide Fragmente gemessen werden.
Das letzte Kapitel befasst sich mit weiteren Konzepten, die als Detektor realisiert werden könnten.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Christian Sören Janke
URN:urn:nbn:de:hebis:30:3-553064
Place of publication:Frankfurt am Main
Referee:Reinhard Dörner, Till Jahnke
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2020/08/04
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/07/28
Release Date:2020/08/07
Pagenumber:202
HeBIS PPN:467655057
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $