Angeregt und Abgefragt: Moleküle im Reaktionsmikroskop : Zerfall in Femtosekunden

Im Rahmen dieser Arbeit wurde ein Reaktionsmikroskop (REMI) nach dem Messprinzip COLTRIMS (Cold Target Recoil Ion Momentum Spectrometry) neu konstruiert und aufgebaut. Die Leistungsfähigkeit des Experimentaufbaus konnte
Im Rahmen dieser Arbeit wurde ein Reaktionsmikroskop (REMI) nach dem Messprinzip COLTRIMS (Cold Target Recoil Ion Momentum Spectrometry) neu konstruiert und aufgebaut. Die Leistungsfähigkeit des Experimentaufbaus konnte sowohl in diversen Testreihen als auch anschließend unter realen Messbedingungen an der Synchrotronstrahlungsanlage SOLEIL und am endgültigen Bestimmungsort SQS-Instrument (Small Quantum Systems) des Freie-Elektronen-Lasers European XFEL (X-ray free-electron laser) eindrucksvoll unter Beweis gestellt werden.
Mit der Experimentiertechnik COLTRIMS ist es möglich, alle geladenen Fragmente einer Wechselwirkung eines Projektilteilchens mit einem Targetteilchen mittels zweier orts- und zeitauflösender Detektoren nachzuweisen. In einem Vakuumrezipienten wird die als Molekularstrahl präparierte Targetsubstanz inmitten der Hauptkammer zentral mit einem Projektilstrahl (z.B. des XFEL) zum Überlapp gebracht, sodass dort eine Wechselwirkung stattfinden kann. Bei den entstehenden Fragmenten handelt es sich um positiv geladene Ionen sowie negative geladene Elektronen. Elektrische Felder, erzeugt durch eine Spektrometer-Einheit, sowie durch Helmholtz-Spulen erzeugte magnetische Felder ermöglichen es, die geladenen Fragmente in Richtung der Detektoren zu lenken. Die Orts- und Zeitmessung eines einzelnen Teilchens (z.B. eines Ions) findet in Koinzidenz mit den anderen Teilchen (z.B. weiteren Ionen bzw. Elektronen) statt. Mit dieser Messmethode können die Impulsvektoren und Ladungszustände aller geladenen Fragmente in Koinzidenz gemessen werden. Da hierbei die geometrische Anordnung der einzelnen Komponenten für die Leistungsfähigkeit des Experiments eine entscheidende Rolle spielt, mussten bei der Neukonstruktion des COLTRIMS-Apparates für den Einsatz an einem Freie-Elektronen-Laser (FEL) einige Rahmenbedingungen erfüllt werden. Besonders wurden die hohen Vakuumvoraussetzungen an den Experimentaufbau aufgrund der enormen Lichtintensität eines FEL beachtet. Das Zusammenspiel der vielen Einzelkomponenten konnte zunächst in mehreren Testreihen überprüft werden. Unter anderem durch Variation der Vakuumbauteile in Material und Beschaffenheit konnten die zuvor ermittelten Vorgaben schließlich erreicht werden. Das neu konstruierte Target-Präparationssystem zur Erzeugung molekularer Gasstrahlen erlaubt nun den Einsatz von bis zu vier unterschiedlich dimensionierten, differentiell gepumpten Stufen. Zudem wurden hochpräzise Piezo-Aktuatoren verbaut, welche die Bewegung von Blenden im Vakuum erlauben, wodurch eine variable Einstellung des lokalen Targetdrucks ermöglicht wird. Die Anpassung der elektrischen Felder des Spektrometers für ein jeweiliges Experiment wurde mittels Simulationen der Teilchentrajektorien, Teilchenflugzeiten sowie der Detektorauflösung durchgeführt.
Da die in dieser Arbeit besprochenen Messungen und Ergebnisse die Wechselwirkungsprozesse von Röntgenstrahlung bzw. Synchrotronstrahlung mit Materie thematisieren, wird die Erzeugung von Synchrotronstrahlung sowohl in Kreisbeschleunigern als auch in den modernen Freie-Elektronen-Lasern (FEL) erklärt und hergeleitet. Der im Röntgenbereich arbeitende Freie-Elektronen-Laser European XFEL, welcher u.A. als Strahlungsquelle für die hier gezeigten Experimente diente, ist eine von derzeit noch wenigen Anlagen ihrer Art weltweit. Seine Lichtintensität in diesem Wellenlängenbereich liegt bis zu acht Größenordnungen über den bisher verwendeten Anlagen für Synchrotronstrahlung.
Beim ersten Einsatz der neuen Apparatur an der Synchrotronstrahlungsanlage SOLEIL wurde der ultraschnelle Dissoziationsprozess von Chlormethan (CH3Cl) untersucht. Während des Zerfallsprozesses nach Anregung durch Röntgenstrahlung werden hochenergetische Auger-Elektronen emittiert, welche in Koinzidenz mit verschiedenen Molekülfragmenten nachgewiesen wurden. Durch den Zerfallsmechanismus der ultraschnellen Dissoziation wird die Auger-Elektronenemission nach resonanter Molekülanregung während der Dissoziation des Moleküls beschrieben. Die kinetische Energie des Auger-Elektrons ist dabei abhängig von seinem Emissionszeitpunkt. Somit können die gemessenen Auger-Elektronen ein „Standbild“ der zeitlichen Abfolge des Dissoziationsprozesses liefern.
Es wird eine detaillierte Beschreibung der Datenanalyse vorgenommen, welche aus Kalibrationsmessungen und einer Interpretation der Messdaten besteht. Die abschließende Betrachtung besteht in der Darstellung der Elektronenemissionswinkelverteilungen im molekülfesten Koordinatensystem. Die Winkelverteilung der Auger-Elektronen wird am Anfang der Dissoziation vom umgebenden Molekül- potential beeinflusst und zeigt deutliche Strukturen entlang der Bindungsachse. Entfernen sich die Bindungspartner voneinander und das Auger-Elektron wird währenddessen emittiert, so verschwinden diese Strukturen zunehmend und eine Vorzugsemissionsrichtung senkrecht zur Molekülachse wird sichtbar.
Die Analyse der Messdaten zur Untersuchung von Multiphotonen-Ionisation an Sauerstoff-Molekülen am Freie-Elektronen-Laser European XFEL ermöglichte unter anderem die Beobachtung „hohler Moleküle“, also Systemen mit Doppelinnerschalen- Vakanzen. Solche Zustände können vor allem durch die sequentielle Absorption zweier Photonen entstehen, wobei die hierbei nötige Photonendichte nur von FEL- Anlagen bereit gestellt werden kann. Hier konnte das Ziel erreicht werden, erstmalig die Emissionswinkelverteilungen der Photoelektronen von mehrfach ionisierten Sauerstoff-Molekülen (O+/O3+-Aufbruchskanal) als Folge der ablaufenden Mechanismen femtosekundengenau zu beobachten. Hierzu wurde ein vereinfachtes Schema der verschiedenen Zerfallsschritte erstellt und schließlich ermittelt, dass der Zerfall durch eine PAPA-Sequenz beschrieben werden kann. Bei dieser handelt es sich um die zweimalige Abfolge von Photoionisation und Auger-Zerfall. Somit werden vier positive Ladungen im Molekül erzeugt. Das zweite Photon des XFEL wird dabei während der Dissoziation der sich Coulomb-abstoßenden Fragmente absorbiert, weshalb es sich um einen zweistufigen Prozess aus Anrege- und Abfrage- Schritt (Pump-Probe) handelt. Schlussendlich gelang zudem der Nachweis von Doppelinnerschalen-Vakanzen im Sauerstoff-Molekül nach Selektion des O2+/O2+- Aufbruchkanals. Hierfür konnten die beiden Möglichkeiten einer zweiseitigen oder einseitigen Doppelinnerschalen-Vakanz getrennt betrachtet werden und ebenfalls erstmalig das Verhalten der Elektronenemission dieser beiden Zustände verglichen werden.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Gregor Kastirke
URN:urn:nbn:de:hebis:30:3-560575
Place of publication:Frankfurt am Main
Referee:Reinhard Dörner, Till Jahnke
Advisor:Reinhard Dörner, Till Jahnke
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2020/09/23
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/09/11
Release Date:2020/09/23
Pagenumber:322
HeBIS PPN:469758678
Institutes:Physik
Dewey Decimal Classification:530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $