Synthese, Charakterisierung und Reaktivität von amorphem, schwarzem Silicium

Die vorliegende Arbeit fasst folgende experimentellen Arbeiten zusammen: • Synthese von amorphem, schwarzem, basischem Silicium Si am,schw,ox und amorphem, schwarzem, nicht basischem Silicium Siam,schw durch Reduktionsre
Die vorliegende Arbeit fasst folgende experimentellen Arbeiten zusammen: • Synthese von amorphem, schwarzem, basischem Silicium Si am,schw,ox und amorphem, schwarzem, nicht basischem Silicium Siam,schw durch Reduktionsreaktion von Siliciumtetrachlorid mit Natrium. • Reaktivität des amorphen Siliciums Si am gegenüber verschiedenen Gasen: Cl2, HCl, CH3Cl • Reaktivität von Si am gegenüber Alkoholen bei Raumtemperatur. • Reaktivität von Si am gegenüber Alkoholen und Essigsäure in einem geschlossenen System, nicht katalysiert/katalysiert durch Cu(I)Cl und Cu(I)O. • Reaktivität von Si am,schw,ox und Si am,schw gegenüber Alkoholen und Essigsäure in einem offenen System (Ofen, „slurry phase“-Reaktor), nicht katalysiert/katalysiert durch Cu(I)Cl und Cu(I)O. • Thermische und katalytische Disproportionierungsreaktionen von Methylmethoxysilanen, katalysiert durch Alkalimetalle (Na), salzartige Verbindungen (Ca(OH)2, MgSO4/C, Na2SO4/C und (NH4)2SO4/C) und Lewis-Säuren (AlCl3). • Komproportionierung zwischen Trimethylmethoxysilan und Methyltrimethoxysilan Der Schwerpunkt dieser Arbeit lag in Untersuchung der chemischen Reaktivität von amorphem Silicium Si am, synthetisiert durch Na-Reduktion von Siliciumtetrachlorid, gegenüber verschiedenen Gasen, wie z. B. Chlorgas, Chlorwasserstoff und Methylchlorid, gegenüber Alkoholen, wie z. B. Methanol, Ethanol und Phenol und gegenüber Essigsaure unter unterschiedlichen Reaktionsbedingungen. Die Reaktion zwischen amorphem Silicium Si am und Cl2-Gas führt bei 240-250°C zu Tetrachlorsilan SiCl4 als einziges Produkt. Die Reaktion mit HCl-Gas liefert im Temperaturbereich zwischen 360-370°C zwei Produkte: 15% Dichlorsilan, H2SiCl2 und 85% Trichlorsilan, HSiCl3. Im Temperaturbereich zwischen 370-420°C entstehen drei Produkte: 36,4% Dichlorsilan H2SiCl2, 58,5% Trichlorsilan HSiCl3 und 5,1% Tetrachlorsilan SiCl4. Über eine Temperaturführung kann die Produktbildung wesentlich beeinflusst und damit auch gesteuert werden. Durch eine Reaktion mit Methylchlorid bei 560°C entstehen zwei Produkte: 79% Methyltrichlorsilan CH3SiCl3 und 21% Dimetyldichlorsilan (CH3)2SiCl2. Basisches Silicium Siam,schw,ox liefert in den Reaktionen mit Alkoholen und Essigsäure unter Rückfluss-Bedingungen (Temperaturen zwischen 20 und 420°C; offene Reaktionssysteme) jeweils ein einziges Produkt und führt mit den korrespondierenden Partnern selektiv zu Tetramethoxy-, Tetraethoxy-, Tetraphenoxy- und Tetraacetoxysilan. Diese Reaktionen werden durch die im eingesetzten Siam/NaCl-Gemisch vorhandene Base (NaOH, Na2Ox; x = 1, 2) katalysiert. Gemischte Alkylalkoxysilane oder Siloxane entstehen unter den vorgegebenen Bedingungen nicht. Silicium setzt sich dabei in den Reaktionen mit Methanol und Ethanol vollständig um. Werden die Bedingungen modifiziert und die Reaktionen in geschlossenen Systemen (Reaktionsampullen) bei 150°C, katalysiert durch 5 Gew. % Cu(I)Cl im Mol-Verhältnis Si am,schw,ox/CH3OH 1:3 und 1:4 durchgeführt, wird Trimethoxysilan in 91% und 84% Ausbeute gewonnen. Der Produktbildungsweg führt offensichtlich über die Katalyse eines Komplexes Na+[Cu(OH)Cl]-, der in situ aus Cu(I)Cl und NaOH gebildet wird. Nicht basisches Silicium, Siam,schw, reagiert mit Methanol bei Raumtemperatur zu Trimethoxysilan HSi(OCH3)3 (16-18%) und zu Tetramethoxysilan Si(OCH3)4 (84-82%). Die Produktbildung kann durch Änderungen Reaktionsbedingungen in Richtung von Trimethoxysilan verschoben werden. So entsteht Trimethoxysilan in einer geschlossenen Ampulle zu 95% als Hauptprodukt der Reaktion zwischen amorphem Silicium und Methanol im Mol-Verhältnis 1:3 in Anwesenheit von NH4HF2 als Aktivator. 84,5% Trimethoxysilan entstehen in einer Ampulle bei 200°C nach 5 Stunden Reaktionszeit, dann wenn Methanol im stöchiometrischen Verhältnis 8:1 eingesetzt wird. Der Umsatz an Silicium ist praktisch vollständig (100%). Wird die Reaktion zwischen Siam,schw und Methanol in einem „slurry phase“-Reaktor durchgeführt, resultiert eine Abhängigkeit der Produktausbeute vor allem vom Lösungsmittel, dann aber auch von den weiteren Bedingungen. In Dodecylbenzol entsteht das Trimethoxysilan bei 230°C und mit Cu(I)O als Katalysator zu 72% in einer 8-stündigen Reaktion. Unter vergleichbaren Bedingungen, aber in Isoparaffinöl bildet sich Trimethoxysilan zu 61%. In einem modifizierten „slurry phase“-Reaktor, in dem die Produkte mit überschüssigem Methanol sofort aus der Reaktion abgeführt werden, entsteht das Trimethoxysilan nicht. Allerdings bilden sich in diesem Fall methylierte Methoxysilane. Der Umsatz an Silicium hängt auch von der Temperatur des Methanol-Dampfes ab. Wird die Temperatur zwischen 150-200°C gehalten, werden 49% des Siliciums umgesetzt. Ansonsten beträgt die Umsatzrate des Siliciums 20-25%. Amorphes, schwarzes, basenfreies Silicium, Si am,schw, reagiert bei 150°C mit Ethanol im Mol-Verhältnis 1:3 zu 91% und bei 200°C (Mol-Verhältnis Si : EtOH 1:8) zu 86% Triethoxysilan, HSi(OEt)3. Die Reaktion zwischen nicht basischem Silicium Si am,schw und Essigsäure liefert in der Siedehitze kein Tetraacethoxasilan, sondern nur Polyacethoxysilane mit einem Polymerisationsgrad von n = 2, 3, in einer Ampulle bildet sich jedoch ein Gemisch aus Tetraacetoxysilan und verschiedenen Acethoxypolysilanen. Die Polysilanbildung verstärkt sich mit zunehmender Reaktionstemperatur und –dauer. Die Reaktion zwischen Si am,schw und Essigsäure in einem offenen System (Ofen) liefert bei 300°C außer Tetraacetoxysilan ein Gemisch von Acethoxypolysilanen mit n=2-6. Versuche zur Bildung von Phenoxsilanen aus Si am,schw. und Phenol schlugen bei Temperaturen zwischen 150-300°C fehl. Das MALDI-TOF-MS-Spektrum einer bei 225-230°C im Vakuum siedenden Fraktion, die aus Reaktion von Si am,schw mit Phenol bei 420°C im Ofen entstanden ist, zeigt Spuren von Tetraphenoxysilan und organische Polymere mit dem Molekulargewichht bis zu 960 Dalton. Während Umsetzungen von amorphem Silicium mit Methanol in geschlossenen Reaktionsampullen Trimethoxysilan und Tetramethoxysilan als Hauptprodukte liefern, bilden sich in einem offenen System methylierte Methoxysilane MenSi(OMe)4-n (n=1, 2) in unterschiedlichen Ausbeuten. Dimethyldimethoxysilan entsteht aus basischem Silicium Siam,schw,ox nicht; selbst durch Katalysatorzusatz entsteht das gewünschte Produkt nur in Spuren. Die Monomethylierung verläuft dagegen erfolgreicher. Die höchste Ausbeute an Methyltrimethoxysilan (33,7%) wird bei 320°C mit 20 Gew. % Cu(I)Cl als Katalysator erzielt. Völlig anders verhält sich nicht basisches Silicium Si am,schw , denn es reagiert mit Methanol in einem offenen System bei 350°C zu 13% Dimethyldimethoxysilan (CH3)2Si(OCH3)2, und 37% Methyltrimethoxysilan CH3Si(OCH3)3. In Reaktionen mit größeren Silicium-Mengen (Si-Gehalt: 39-60 mmol) entstehen in einem nicht gerührten Reaktionsreaktor nach 20’ Minuten Reaktionszeit bei 300°C 26% Dimethyldimethoxysilan (CH3)2Si(OCH3)2 und nach 45’ Minuten Reaktionszeit 49,5% Methyltrimethoxysilan CH3Si(OCH3)3. In einem nicht gerührten Reaktionsrohr entstehen nach 3 Stunden Reaktionszeit 25-30% Dimethyldimethoxysilan bei 300°C und mit 20 Gew. % Kupfer(I)Chlorid als Katalysator. In einem gerührten Reaktionsrohr bilden sich bei 350°C und mit 20 Gew. % Cu(I)Cl nach 3-stündiger Reaktion 23,5% (CH3)2Si(OCH3)2 und 53,3% CH3Si(OCH3)3. Das Vorhandensein des Katalysators erhöht die Ausbeute an methylierten Methoxysilanen in den Reaktionen zwischen nicht basischem Silicium und Methanol. Aus dem Verlauf der Reaktion im Ofen lässt sich schließen, dass die größte Menge des Dimethyldimethoxysilans, (CH3)2Si(OCH3)2, während der ersten 20-40 Minuten entsteht. Danach sinkt der Anteil mit zunehmender Reaktionszeit, es bilden sich verstärkt die festen Dimethyloligosiloxane. Die Ausbeute an Tetramethoxysilan, Si(OCH3)4, wächst mit der Reaktionszeit kontinuierlich. Dagegen bleibt die Ausbeute an Methyltrimethoxysilan, CH3Si(OCH3)3, während 3-stündiger Reaktion relativ konstant. Die Bildung aller drei Produkte wurde zwischen 300° und 350°C detailliert verfolgt. Nur ca. 20% des Siliciums setzen sich zu den flüchtigen Produkten um, rund 80% Silicium bleiben in fester Form als nicht abreagiertes Silicium und als feste Oligodimethylsiloxane erhalten. Eine nicht katalysierte Reaktion zwischen Si am,schw und Ethanol liefert nach 3h Reaktionszeit in einem nicht rührenden Reaktor etwa 23% HSi(OCH3)3 und etwa 72% Si(OEt)4. Etylenethoxysilane oder -siloxsane bilden sich nicht. Zum Weiteren ist es gelungen, Dimethyldimethoxysilan durch Disproportionierungsreaktion aus Methyltrimethoxysilan und Tetramethoxysilan über metallischem Natrium im Mol-Verhältnis 1:1 in einer Ampulle bei 250°C herzustellen. Aus Disproportionierung von Methyltrimethoxysilan sind 12% Dimethyldimethoxysilan zu erhalten. Die Disproportionierung von Tetramethoxysilan führt zu 27% Dimethyldimethoxysilan, (CH3)2Si(OCH3)2, 34% Methyltrimethoxysilan, CH3Si(OCH3)3, und 11% Trimethylmethoxysilan, (CH3)3SiOCH3. Die Menge des eingesetzten Natriums muss in weiteren Arbeiten noch optimiert werden. Eine Komproportionierungsreaktion zwischen Trimethylmethoxysilan, (CH3)3SiOCH3, und Methyltrimethoxysilan, CH3Si(OCH3)3, zu Dimethyldimethoxysilan, (CH3)2Si(OCH3)2, fand unter den in dieser Arbeit beschriebenen Bedingungen nicht statt. Diese Ergebnisse sind ein im Labormaßstab chlorfreies Verfahren zur Herstellung von methylierten Methoxysilanen. Unter der Voranstellung der Aufskalierbarkeit wird damit eine neue Route eines möglicherweise technisches Prozesses (das Q-Verfahren) zu Darstellung von Siliconen zugänglich; diese führt wie folgt aus: Siliciumtetrachlorid → amorphes Silicium → Tetramethoxysilan/Tetraethoxysilan/Tetraacetoxysilan → Methylmethoxysilane → Silicone. Es gilt nun, die Synthesebedingungen nach erfolgreicher Optimierung in den Pilotmaßstab zu überführen. Die Synthese von Trimethoxysilan, HSi(OCH3)3, erscheint bereits jetzt schon den Bedingungen des technisch durchführenden Cromptonprozesses überlegt zu sein. Diese bietet jedoch den Vorteil, von technisch verfügbarem Silicium anzugehen. Eine exakte und vergleichende Prozess-Analyse wird darüber Aufschluss geben, ob die in dieser Arbeit erworbenen Ergebnisse zu einer technischen Umsetzung führen.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Natalie Spomer
URN:urn:nbn:de:hebis:30-48665
Referee:Norbert Auner
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2007/09/11
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2007/07/27
Release Date:2007/09/11
HeBIS PPN:190323183
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $