The carotenoid pathway in diatoms

  • Carotinoide sind Pigmente, die in Pflanzen, Algen, einigen Pilzen und Bakterien vorkommen. Sie spielen eine wichtige Rolle bei der Photosynthese durch Absorption von Licht und beim Lichtschutz. Sie sind verantwortlich für die braunen, roten, orangen und gelben Farben von Obst, Gemüse, Herbstblättern und die Farbe einiger Blumen und Algen. Tiere können keine Carotinoide synthetisieren, daher ist ihre Anwesenheit auf die Nahrungsaufnahme zurückzuführen. Carotinoide sind Tetraterpenoide (40C), die aus Isoprenoidmolekülen (5C) synthetisiert werden. Der Methylerythritol-phosphatweg ist der Carotinoid-Vorläuferweg, der die Isoprenoideinheiten bildet. Carotinoide haben aufgrund ihrer gesundheitlichen Vorteile das Interesse der Nutrazeutika-Industrie geweckt. Fucoxanthin ist ein Carotinoid, das nur in Kieselalgen, Braunalgen, Haptophyten und einigen Dinoflagellaten vorkommt. Aufgrund seiner Vorteile zur Vorbeugung von Krebs, kognitiven Erkrankungen und Fettleibigkeit sowie seiner antioxidativen Eigenschaften ist Fucoxanthin ein sehr interessantes Molekül fur die Nutrazeutikabranche. Fucoxanthin hat eine komplexe chemische Struktur mit einer Allenbindung und einer Epoxyketogruppe. Daher wäre seine chemische Synthese kompliziert, da es auch eine stereokontrollierte Synthese erfordert86. Aus diesem Grund ist die Extraktion aus Makroalgen oder Mikroalgen die Methode der Wahl für die kommerzielle Herstellung von Fucoxanthin. In dieser Arbeit bestand das Ziel darin, die Fucoxanthin-Produktivität in Kieselalgen mit gentechnischen Methoden zu steigern, damit die Zellen mehr Fucoxanthin produzieren. Zu diesem Zweck wurde der Effekt der Insertion zusätzlicher Kopien von Genen in das Genom untersucht, die für geschwindigkeitsbestimmende oder Schlüsselenzyme im Carotinoid- und MEP-Weg kodieren. Zu Beginn wurden diese Effekte bei einzelnen Mutanten beobachtet. Letztendlich ist es jedoch das Ziel, eine Mutante zu erzeugen, die mehrere geschwindigkeitsbestimmende Enzyme überexprimiert, um auf diese Weise Engpässe zu vermeiden. In früheren Studien erreichten Eilers et al.54 durch die einmalige Überexpression der psy- und dxs-Gene in der Kieselalge P. tricornutum einen 2.4- und 1.8-fachen Anstieg der Fucoxanthin-Spiegel. In dieser Arbeit führte die Insertion zusätzlicher Kopien der Gene idi und pds2 nicht dazu, dass die Zellen mehr Fucoxanthin produzieren. Im Gegensatz dazu erreichten die Mutanten mit zusätzlichen Kopien der Gen ggpps und mit zusätzlichen Kopien sowohl von psy als auch von dxs seine um 28% bzw. 10% höhere Fucoxanthin-Produktivität pro Million Zellen. Bei diesen Mutanten ist die Gesamtproduktivität jedoch geringer als beim Wildtyp, da ihr Wachstum langsamer als beim Wildtyp ist. Unter Berücksichtigung der besten Zielgene wurden Mutanten erzeugt, die gleichzeitig zusätzliche Kopien von psy, dxs und ggpps enthielten. Die Mutanten hatten unter sehr niedriegen Lichtbedingungen eine um bis zu 61% höhere Produktivität pro Million Zellen als der Wildtyp. Ausnahmsweise wurden diese Mutanten bei sehr schwachem Licht (10 µE m-2 s-1) gezüchtet, da sie sehr gestresst waren und als Zellklumpen wuchsen. Obwohl die Gesamt-Fucoxanthin-Spiegel in diesen Mutanten unter diesen Bedingungen höher sind als im Wildtyp, sind sie daher niedriger als die Fucoxanthin-Spiegel bei den in anderen Experimenten verwendeten Lichtbedingungen (50 µE m-2 s-1). Als Ergebnis dieser Experimente kann gesagt werden, dass die Belastung der Zellen nach den genetischen Veränderungen untersucht werden muss, da dies zu einer Abnahme der Biomasse und folglich zu einer Abnahme der Fucoxanthinproduktion führt. Alternativ könnte auch eine 2-Stufen-Kultur etabliert werden, in der in einem ersten Schritt eine hohe Biomasse erreicht wird und im zweiten Schritt die Expression der interessierenden Gene induziert wird. Aufgrund der antioxidativen Eigenschaften von Carotinoiden besteht eine übliche Strategie zur Akkumulation von Carotinoiden darin, die Zellen unter oxidative Stressbedingungen zu setzen. Diese Strategie ist jedoch nicht wirksam für die Anreicherung von Fucoxanthin unter hohen Salzkonzentrationen oder hohen Lichtbedingungen. Bessere Versuchspläne könnten jedoch eine 2-Stufen-Kultur oder adaptive Laborbedingungen gewesen sein. Eine andere mögliche Strategie zur Erhöhung des Fucoxanthinspiegels wäre die Durchführung einer zufälligen Mutagenese der Zellen. Auf diese Weise sind keine Vorkenntnisse über den Carotinoidsyntheseweg und seine Regulation erforderlich und es kann zu Veränderungen in Genen führen, die keine offensichtlichen Ziele sind. Experimente mit zufälliger Mutagenese erfordern ein Hochdurchsatz-Screeningsystem, da Hunderte oder sogar Tausende von Mutanten erhalten werden. Eine mögliche Strategie, um die Kultivierung der hohen Anzahl von Mutanten zu vereinfachen, ist die Einkapselung dieser Mutanten in Alginatkügelchen. Auf diese Weise können alle Mutanten in demselben Gefäß kultiviert werden. Die eingekapselten Zellen können dann beispielsweise mit einem Durchflusszytometer auf große Partikel durch Fluoreszenz- oder Absorptionsmessungen gescreent werden. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alba Blázquez Pla
URN:urn:nbn:de:hebis:30:3-590925
Place of publication:Frankfurt am Main
Referee:Claudia BüchelORCiD, Gerhard SandmannORCiD
Advisor:Claudia Büchel
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/03/11
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/02/12
Release Date:2021/03/22
Page Number:143
HeBIS-PPN:47722380X
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht