Synthese, Reaktivität und Koordinationsverhalten neuartiger oligotoper Poly(pyrazol-1-yl)boratliganden

Poly(pyrazol-1-yl)borate, die sogenannten Skorpionate, repräsentieren eine der etabliertesten Ligandenklassen in der Koordinationschemie und finden aufgrund ihrer Vielseitigkeit zahlreiche Anwendungen. In den letzten Jah
Poly(pyrazol-1-yl)borate, die sogenannten Skorpionate, repräsentieren eine der etabliertesten Ligandenklassen in der Koordinationschemie und finden aufgrund ihrer Vielseitigkeit zahlreiche Anwendungen. In den letzten Jahren hat sich ein besonderes Interesse an Bis- und Tris(pyrazol-1-yl)boratliganden entwickelt, die mehrere Skorpionateinheiten im selben Molekül vereinen und dadurch kooperative Effekte zwischen den Metallionen fördern. Diese Liganden können sowohl Einsatz in der homogenen Katalyse als auch in den Materialwissenschaften finden. Die bisher in unserer Arbeitsgruppe entwickelten ditopen Bis(pyrazol-1-yl)borate des Typs L (Abb. 3.1) weisen allerdings eine recht hohe Hydrolyseempfindlichkeit auf, deren Ursache wahrscheinlich im elektronenschiebenden Charakter und der Raumerfüllung der Alkylsubstituenten begründet liegt. Im Rahmen der vorliegenden Arbeit wurden daher zunächst die ditopen Skorpionatliganden M2[3] und M2[6] mit Phenyl- und Pentafluorphenylsubstituenten dargestellt, die in darauf folgenden Hydrolysestudien eine im Vergleich zu L erheblich höhere Beständigkeit gegenüber Feuchtigkeit zeigten. Die Umsetzungen der Liganden Li2[Lpara] (Dissertation Dr. Susanne Bieller; Frankfurt 2005) und Li2[6] mit MnII-chlorid verdeutlichten, dass sich das C6F5-substituierte Heteroskorpionat auch in Bezug auf sein koordinationschemisches Verhalten vom tertButyl-substituierten Liganden unterscheidet. Während Li2[Lpara] mit MnCl2 zu einem chlorid-überbrückten, makrozyklischen, dinuklearen Mangankomplex reagiert, wird mit Li2[6] das in Abb. 3.2 dargestellte Koordinationspolymer {(MnCl2)2(Li(THF)3)2[6]}∞ erhalten. Die Ladung der anionischen Polymerkette wird durch Lithium-Gegenionen ausgeglichen. Um die Bildung von diskreten Komplexen einerseits bzw. von Koordinationspolymeren andererseits gezielt steuern zu können, wurden die mit sterisch anspruchsvollen Pyrazolylsubstituenten versehenen Liganden M2[4], M2[5] und M2[7] (Abb. 3.1) dargestellt. Im Zuge der Kristallisation von Li2[4] zeigte sich, dass diese Verbindung eine hohe Affinität für Chloridionen besitzt. Auch in Anwesenheit eines Überschusses Kronenether führen Spuren des Halogenids zur Ausbildung des in Abb 3.3 gezeigten dinuklearen, chloridverbrückten Lithiumkomplexes Li2Cl[4]. Die ausgeprägte Komplexbildungstendenz lässt Li2Cl[4] im Hinblick auf die Entwicklung von Anionenrezeptoren interessant erscheinen. Komplexe, in denen zwei Metallionen durch zwei Heteroskorpionatliganden in eine makrozyklische Struktur eingebunden werden (Tmeta/para in Abb. 3.4), konnten im Rahmen dieser Arbeit nicht isoliert werden. Ein Hinweis, warum dieses Strukturmotiv ungünstig sein könnte, wurde durch die Charakterisierung des auf einem partiell hydrolysierten Derivat von Li2[Lpara] beruhenden CoII-Makrozyklus Co2[23]2 erhalten. Die Analyse der Strukturparameter dieser Verbindung deutet an, dass die Bildung eines Makrozyklus im Fallder unhydrolysierten Heteroskorpionate aufgrund sterischer Wechselwirkungen zwischen den Pyrazolylringen und der Phenylenbrücke benachteiligt sein sollte. Obwohl zwischen Aryl- und Alkyl-basierte n Heteroskorpionaten erhebliche Unterschiede hinsichtlich ihrer Neigung zur hydrolytischen Zersetzung erkennbar sind, zeigen beide Ligandentypen ähnliche Labilitäten gegenüber der stark Lewis-aziden Verbindung Brommanganpentacarbonyl. Die Reaktionen von Li2[Lpara], Li2[3] und Li2[6] mit Mn(CO)5Br führten zur Spaltung von B-N-Bindungen, die in allen drei Fällen durch Kristallisation des in Abb. 3.5 gezeigten, pyrazolid-verbrückten MnI-Carbonylkomplexes 21 dokumentiert werden konnte. Im Gegensatz zu den Heteroskorpionatliganden zeigen oligotope phenylenverknüpfte Homoskorpionate keine Tendenz, sich unter dem Einfluss von Mn(CO)5Br zu zersetzen. Reaktionen der di- und tritopen Tris(pyrazol-1-yl)borate Li2[15], Li2[16] und Li3[18] lieferten die in Abb. 3.6 dargestellten Mangantricarbonylkomplexe (Mn(CO)3)2[15], (Mn(CO)3)2[16] und (Mn(CO)3)3[18] in guten Ausbeuten. Neben der Darstellung dieser, für materialwissenschaftliche Fragestellungen (Koordinationspolymere, Metallorganische Netzwerke) interessanten Liganden, wurde im Rahmen der vorliegenden Arbeit auch der Frage nachgegangen, ob die Verknüpfung zweier Heteroskorpionateinheiten Auswirkungen auf die katalytische Aktivität entsprechender Rhodium-Cyclooctadien-Komplexe in der Polymerisation von Phenylacetylen hat. Sterisch anspruchsvolle Pyrazolylsubstituenten tragende monotope Rhodium-Cyclooctadien- Skorpionatkomplexe konnten in dieser Reaktion bereits erfolgreich als Katalysatoren eingesetzt werden und lieferten regioselektiv cis-transoid-verknüpftes Poly(phenylacetylen). Zunächst wurden die in Abb. 3.7 dargestellten Rhodiumkomplexe (Rh(cod))2[3] und (Rh(cod))2[6] von Bis(pyrazol-1-yl)boraten, die keine sterisch anspruchsvollen Pyrazolylsubstituenten tragen, synthetisiert. Ähnlich wie der analoge einkernige Komplex Rh(cod)[H2Bpz2 ] zeigten (Rh(cod))2[3] und (Rh(cod))2[6] keinerlei katalytische Aktivität. Daher sollten im Anschluss die mit Phenylpyrazolylgruppen ausgestatteten Derivate (Rh(cod))2[5] und (Rh(cod))2[7] synthetisiert und im katalytischen Prozess eingesetzt werden. Im Verlauf dieser Experimente stellte sich heraus, dass die Reaktionen der Alkalimetallskorpionate Li2[5] und K2[7] mit (Rh(Cl)(cod))2 nicht zu den Zielverbindungen, sondern zur Zersetzung der Ligandgerüste führen. In beiden Fällen konnte das Abbauprodukt 22 isoliert werden (Abb. 3.8). Weitere Untersuchungen ergaben, dass 22 in der Lage ist, Phenylacetylen in guten Ausbeuten und regioselektiv (cis-transoid-verknüpftes Poly(phenylacetylen)) zu polymerisieren. 22 stellt somit ein gut zugängliches und leicht zu modifizierendes Katalysatorsystem dar, dessen Optimierung Thema zukünftiger Untersuchungen sein wird.
show moreshow less

Metadaten
Author:Thorsten Morawitz
URN:urn:nbn:de:hebis:30-60719
Referee:Matthias Wagner
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/05/14
Year of first Publication:2008
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2008/10/21
Release Date:2009/05/14
SWD-Keyword:Pyrazolderivate
HeBIS PPN:212853279
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $