Testing the altitude attribution and vertical resolution of AirCore measurements with a new spiking method

  • AirCore samplers have been increasingly used to capture vertical profiles of trace gases reaching from the ground up to about 30 km, in order to validate remote sens- ing instruments and to investigate transport processes in the stratosphere. When deployed to a weather balloon, accu- rately attributing the trace gas measurements to the sampling altitudes is nontrivial, especially in the stratosphere. In this paper we present the CO-spiking experiment, which can be deployed to any AirCore on any platform in order to evalu- ate different computational altitude attribution processes and to experimentally derive the vertical resolution of the profile by injecting small volumes of signal gas at predefined GPS altitudes during sampling. We performed two CO-spiking flights with an AirCore from the Goethe University Frankfurt (GUF) deployed to a weather balloon in Traînou, France, in June 2019. The altitude retrieval based on an instantaneous pressure equilibrium assumption slightly overestimates the sampling altitudes, especially at the top of the profiles. For these two flights our altitude attribution is accurate within 250 m below 20 km. Above 20 km the positive bias becomes larger and reaches up to 1.2 km at 27 km altitude. Differences in descent velocities are shown to have a major impact on the altitude attribution bias. We parameterize the time lag between the theoretically attributed altitude and the actual CO-spike release altitude for both flights together and use it to empirically correct our AirCore altitude retrieval. Regard- ing the corrected profiles, the altitude attribution is accurate within ±120 m throughout the profile. Further investigations are needed in order to test for the scope of validity of this correction parameter regarding different ambient conditions and maximum flight altitudes. We derive the vertical resolu- tion from the CO spikes of both flights and compare it to the modeled vertical resolution. The modeled vertical resolution is too optimistic compared to the experimentally derived res- olution throughout the profile, albeit agreeing within 220 m. All our findings derived from the two CO-spiking flights are strictly bound to the GUF AirCore dimensions. The newly introduced CO-spiking experiment can be used to test differ- ent combinations of AirCore configurations and platforms in future studies.

Download full text files

Export metadata

Metadaten
Author:Thomas Wagenhäuser, Andreas EngelORCiD, Robert Sitals
URN:urn:nbn:de:hebis:30:3-613787
DOI:https://doi.org/10.5194/amt-14-3923-2021
ISSN:1867-8548
Parent Title (English):Atmospheric measurement techniques
Publisher:Copernicus
Place of publication:Katlenburg-Lindau
Document Type:Article
Language:English
Date of Publication (online):2021/05/27
Date of first Publication:2021/05/27
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2021/07/05
Volume:14
Issue:5
Page Number:12
First Page:3923
Last Page:3934
HeBIS-PPN:484737341
Institutes:Geowissenschaften / Geographie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Open-Access-Publikationsfonds:Geowissenschaften / Geographie
Licence (German):License LogoCreative Commons - Namensnennung 4.0