Untersuchungen zur Lamb-Verschiebung in schweren Ein- und Zwei-Elektronen-Systemen

Investigations of the Lamb shift in heavy one and two electron systems

  • Im Rahmen dieser Arbeit sind Experimente zur Bestimmung der 1s Lamb-Verschiebung in wasserstoffartigen Schwerionen und zur Bestimmung des Innerschalenübergangs 2 3P2 --> 2 3S1 in heliumartigen Schwerionen durchgeführt worden. Diese Untersuchungen sind interessant, da es sich hierbei um die Überprüfung der Quantenelektrodynamik im Bereich sehr starker Coulombfelder handelt. Neben den reinen QED-Effekten spielen in diesen schweren Systemen auch relativistische Effekte eine immer bedeutendere Rolle. Es ist erstmals gelungen, eine direkte Messung des Innerschalenübergangs 2 3P2 --> 2 3S1 in einem schweren Z-System durchzuführen. Während in bisherigen Experimenten lediglich leichtere Ionen bis zu einer Kernladungszahl Z = 54 untersucht wurden, sind wir mit unserem Experiment an U90+-Ionen in den Bereich schwerer Systeme vorgedrungen. Zur Energiebestimmung sind am Gastarget des Experimentier-speicherrings (ESR) ein Kristallspektrometer unter einem Beobachtungswinkel von 90° und ein einfacher planarer Germaniumdetektor unter einem Winkel von 35° aufgebaut worden. Das Kristallspektrometer ermöglicht eine hohe Energieauflösung, während der Germaniumdetektor einen breiten Energiebereich abdeckt und somit eine eindeutige Identifizierung der Übergänge ermöglicht. Ein Fit des aufgenommenen Energiespektrums mit einer Simulation zeigt, wie gut die theoretischen Vorhersagen die Übergangsdynamik in diesem Zwei-Elektronen-System beschreiben. Der Innerschalenübergang kann eindeutig von benachbarten Übergängen unterschieden werden. Mit dem Kristallspektro-meter ergibt sich eine Übergangsenergie von 4510,31 ± 0,51 eV, mit dem Germanium-detektor 4509,6 ± 1,5 eV. Beide stimmen gut mit den theoretischen Vorhersagen überein. Durch den geringen Fehler von 0,51 eV stellt diese Messung auch im Vergleich mit den vorhergehenden Experimenten in leichten Systemen eine der genauesten Messungen des Innerschalenübergangs in He-artigen Ionen dar. Zusätzlich dazu kann die Differenz der Innerschalenübergangsenergie von Li-artigem und He-artigem Uran ermittelt werden: 50,94 ± 0,45 eV. Mit dieser Genauigkeit ist unser Experiment empfindlich auf die Zwei-Elektronen-QED und ermöglicht erstmal eine experimentelle Überprüfung dieses Beitrags, der von Kozhedub et al. mit 1,18 eV angegeben wird. Zur Untersuchung der 1s Lamb-Verschiebung von wasserstoffartigen Schwerionen sind bereits eine Vielzahl an Experimenten durchgeführt worden, mit einer maximalen Genauigkeit von 4,6 eV. Die theoretische Auswertung von Korrekturtermen höherer Ordnung erfordert jedoch neue experimentelle Methoden, mit denen sich Genauigkeiten auf dem Niveau von 1 eV und besser erzielen lassen. Dazu hat es ein Nachfolge-experiment zur bisher genauesten Messung der 1s Lamb-Verschiebung in U91+ und des Zwei-Elektronen-Beitrags zum Grundzustand in U90+ am Elektronenkühler gegeben. Hierzu ist das Experiment bei einer niedrigeren Strahlenergie durchgeführt worden. Dabei hat sich allerdings gezeigt, Ionenstrahlen mit einer Energie unterhalb von 20MeV/u besitzen zu kurze Lebensdauern, da bei den niedrigeren Energien die Rekombinationsverluste mit dem Restgas sehr hoch werden und der Ionenstrahl aus technischen Gründen noch einmal umgebuncht werden muss, wobei zusätzlich Zeit und Intensität verloren gehen. Als weiterer Schritt auf dem Weg zu höherer Präzision ist eine Kombination aus einem hochauflösenden Kristallspektrometer (FOCAL) und einem neuartigen orts- und energieauflösenden 2dimensionalen Germaniumdetektor getestet worden. Mit diesem Detektor ist es möglich, mehrere Reflexe gleichzeitig zu messen und somit die Effizienz des Experimentes deutlich zu steigern. Allerdings ist die maximale Energieauflösung bisher über die 250 µm Streifenbreite des Detektors definiert, das entspricht etwas weniger als 200 eV. Tests mit Kalibrationsquellen und das Verfahren des Detektors entlang der Dispersionsachse haben jedoch gezeigt, dass eine Auflösung kleiner als ein Streifen erreichbar ist. Dadurch soll eine Genauigkeit von 1 eV erreicht werden. Die Bewegung der Detektoren, die bei der letzten Strahlzeit einen erheblichen systematischen Fehler verursacht hat, kann mit neuen Detektorplattformen und kontinuierlicher Stickstofffüllung deutlich reduziert werden. Bei den alternativen Methoden Mikrokalorimeter und Absorptionskantenspektroskopie scheinen Mikrokalorimeter eine vielversprechend Entwicklung zu sein, da sie sowohl eine hohe Energieauflösung bieten als auch einen breiten Energiebereich abdecken. Dagegen beinhaltet die Absorptionskantenspektroskopie im Vergleich zu den anderen Methoden zu große systematische Fehler. Aus den Ergebnissen des Experimentes zum Innerschalenübergang und des FOCAL-Commissioning-Experimentes zeigt sich, wie erfolgsversprechend der Einsatz von Kristallspektrometern auf dem Weg zu neuen hochpräzisen Experimenten ist.
  • Experiments on the 1s Lamb-shift in heavy H-like ions and on the intra-shell transitions in heavy He-like systems have been performed. These investigations are of particular interest to verify the validity of quantum electrodynamics (QED) in extremely strong Coulomb fields. In addition, in heavy systems not only QED but also relativistic effects start to play a key role. The experiments have been performed at the gasjet-target of the experimental storage ring (ESR) at GSI. In an experiment with He-like uranium we were able to directly measure the intra-shell transition 2 3P2 --> 2 3S1 , in a high-Z system for the very first time. This has been achieved by combining the results from a high-resolution Bragg crystal-spectrometer and a standard planar Germanium detector. A fit of the experimental spectrum with data obtained from a simulation shows, the theoretical predictions describe the transition dynamics very well in this two-electron system. Another experiment has been performed on H-like lead to investigate the 1s Lamb-shift in heavy H-like systems. Here, a high-resolution Laue crystal-spectrometer has been commissioned together with novel high-resolution two dimensional micro-strip Ge-detectors. The combination of both instruments is a very promising tool for future high-precision x-ray experiments.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Regina Reuschl
URN:urn:nbn:de:hebis:30-62493
Referee:Thomas StöhlkerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/02/27
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/01/29
Release Date:2009/02/27
Tag:schwere Ionen
QED; X-ray spectroscopy; highly charged ions
GND Keyword:Quantenelektrodynamik; Spektroskopie
HeBIS-PPN:209665173
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS-Classification:20.00.00 NUCLEAR PHYSICS / 29.00.00 Experimental methods and instrumentation for elementary-particle and nuclear physics / 29.30.-h Spectrometers and spectroscopic techniques
30.00.00 ATOMIC AND MOLECULAR PHYSICS / 31.00.00 Electronic structure of atoms and molecules: theory / 31.30.-i Corrections to electronic structure (see also 03.30.+p Special relativity; for exotic atoms and molecules, see 36.10.-k; for applications of density-functional theory, see 31.15.es) / 31.30.J- Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions / 31.30.jn QED corrections to electric dipole moments and other atomic properties
30.00.00 ATOMIC AND MOLECULAR PHYSICS / 32.00.00 Atomic properties and interactions with photons (for quantum chaos, see 05.45.Mt; for standards of calibration, see 06.20.fb; for relativistic and quantum electrodynamic effects, see 31.30.J-) / 32.30.-r Atomic spectra (see also 78.47.J- Ultrafast pump/probe spectroscopy in condensed matter and 82.53.Kp Coherent spectroscopy of atoms and molecules in physical chemistry and chemical physics) / 32.30.Rj X-ray spectra
Licence (German):License LogoDeutsches Urheberrecht