Mechanismen der zentralen Neuroprotektion von Statinen

Ziel dieser Arbeit war es, zentrale Wirkungen von Statinen näher zu untersuchen. Hierbei sollten zum einen die Statin-Effekte auf die zerebrale und membranäre Cholesterinhomöostase näher untersucht werden, zum anderen so
Ziel dieser Arbeit war es, zentrale Wirkungen von Statinen näher zu untersuchen. Hierbei sollten zum einen die Statin-Effekte auf die zerebrale und membranäre Cholesterinhomöostase näher untersucht werden, zum anderen sollten Effekte von Statinen auf die APP-Prozessierung sowie auf apoptotische Regulatoren im Gehirn in vivo analysiert werden. Einfluss unterschiedlicher Applikationsformen auf zentrale Statin-Effekte Bislang ist noch nicht vollständig aufgeklärt, ob und inwieweit Statine die zerebrale Cholesterin- oder Isoprenoidsynthese beeinflussen. Statine werden in tierexperimentellen in vivo-Studien bei oraler Wirkstoffapplikation über unterschiedliche Applikationsformen verabreicht wie Schlundsondierung, über das Trinkwasser oder das Futter – der Einfluss der unterschiedlichen Applikationsformen auf die zentralen Statineffekte ist allerdings nicht bekannt. Die zerebralen Statinkonzentrationen wurden bislang nur nach Applikation per Schlundsonde im Tiermodell bestimmt. Für alle anderen oralen Applikationsformen liegen keine Konzentrations-Zeit-Profile der zerebralen Statinspiegel vor. Die in dieser Arbeit vorgestellten Daten über einen direkten Vergleich der Applikation von Lovastatin und Pravastatin über das Futter und per Schlundsonde zeigen, dass zentrale Statin-Effekte insbesondere auf membranärer Ebene entscheidend durch die Wahl der Applikationsform beeinflusst werden. Effekte von Simvastatin auf die zerebrale Cholesterinhomöostase – Vergleich Maus – Meerschweinchen In der vorliegenden Arbeit wurden die Effekte von Simvastatin auf die zentrale und periphere Cholesterinhomöostase in zwei verschiedenen in vivo-Modellen, Mäusen und Meerschweinchen, untersucht. Sowohl Mäuse wie auch Meerschweinchen stellen etablierte Tiermodelle für Untersuchungen des Cholesterin- und Lipoprotein-Metabolismus dar. Allerdings weisen Meerschweinchen eine grössere Ähnlichkeit zum Menschen im Bezug auf den Lipidstoffwechsel auf als die Maus. Die auffälligste Übereinstimmung zwischen Mensch und Meerschweinchen ist, dass auch bei Meerschweinchen die Mehrheit des Cholesterins in LDL transportiert wird. In der vorliegenden Arbeit konnte gezeigt werden, dass insgesamt eine subchronische Simvastatin-Behandlung in Mäusen und Meerschweinchen nicht die gleichen Effekte auf die periphere und zentrale Cholesterinhomöostase hat. Allerdings belegen die Ergebnisse an beiden Tiermodellen, dass generell eine subchronische Simvastatin-Gabe die zerebrale Cholesterinhomöostase nicht negativ beeinflusst. Allerdings werden insbesondere die Serumcholesterinspiegel, die Cholesterinkonzentration in synaptosomalen Plasmamembranen und die DPH-Anisotropie in den beiden Tiermodellen vermutlich aufgrund von Speziesunterschieden im Lipidstoffwechsel in unterschiedlichem Ausmaß beeinflusst, so dass Speziesunterschiede bei der Interpretation tierexperimentellen Statin-Studien immer beachtet werden sollten. Effekte von Simvastatin auf die APP-Prozessierung in vivo Es ist bekannt, dass Statine einen unmittelbaren Einfluss auf die membranäre Cholesterinhomöostase ausüben und dabei vermutlich über eine Veränderung von Raft-Strukturen die APP-Prozessierung modulieren. In der vorliegenden Arbeit wurde der Effekt einer subchronischen Simvastatin-Gabe auf die APP-Prozessierung in einem transgenen AD-Mausmodell (APP751SL-Mäuse) untersucht. Durch die Simvastatin-Behandlung wird eine Umverteilung des Cholesterins aus dem cytofacialen Membranblatt ins exofaciale Membranblatt in synaptosomalen Plasmamembranen induziert und die Proteinexpression des Raft-Markers Flotillin wird signifikant reduziert. Diese Veränderungen innerhalb der synaptosomalen Plasmamembranen sind mit einer Zunahme der Spiegel von unlöslichem Abeta im Gehirn der APP751SL-Mäuse assoziiert. Vermutlich war die Cholesterinsenkung in der Membran nicht stark genug, um die an der APP-Prozessierung beteiligten Sekretasen per se zu inaktivieren. Es scheint vielmehr zu einer Dislokalisation der Rafts zu kommen, die über eine räumliche Annäherung von APP und β-Sekretase/γ-Sekretase letztendlich zu einer erhöhten APP-Prozessierung führt. Darüberhinaus ist in unserer Studie eine Abnahme der Konzentration an löslichem Abeta1-40 im Gehirn der Simvastatin behandelten APP751SL-Mäuse nachweisbar sowie eine gleichzeitige Erhöhung der Konzentration an löslichem Abeta1-40 im Plasma. Dieser Befund deutet darauf hin, dass die Clearance von zerebralem löslichem Abeta1-40 ins Blut durch Simvastatin erhöht wurde. Neuroprotektive Effekte von Simvastatin Es gibt vermehrt Hinweise darauf, dass Statine neben ihrer cholesterinsenkenden Wirkung zentrale protektive Effekte im Rahmen neurologischer Erkrankungen wie Alzheimer Demenz (AD) oder ischämischem Schlaganfall vermitteln. In einer vorangehenden Studie an Mäusen konnten wir zeigen, dass eine subchronische Simvastatin-Gabe eine erhöhte Genexpression des antiapoptotischen Proteins Bcl-2 induziert. In der vorliegenden Arbeit kann dieser Befund im Gehirn von Meerschweinchen bestätigt werden und darüberhinaus kann nachgewiesen werden, dass Simvastatin eine Reduktion der Proteinexpression des proapoptotischen Proteins Bax im Gehirn der behandelten Meerschweinchen induziert. An dissoziierten Hirnzellen wurde anschließend untersucht, ob die signifikante Reduktion der Ratio Bax/Bcl-2 durch Simvastatin-Gabe im Gehirn von Meerschweinchen auf mitochondrialer Ebene protektiv wirkt gegen oxidativen und nitrosativen Stress sowie gegen den Bcl-2 Antagonisten HA 14-1. An dissoziierten Hirnzellen der behandelten Meerschweinchen wirkt Simvastatin über eine Senkung der Ratio Bax/Bcl-2, nachfolgende Hemmung der Caspase-Aktivierung und eine Stabilisierung des mitochondrialen Membranpotentials protektiv. Diese protektiven Wirkungen von Simvastatin sind im Rahmen neurologischer Erkrankungen wie der AD und dem ischämischem Schlaganfall von großer Bedeutung, da bei diesen Erkrankungen Apoptose und mitochondriale Dysfunktion eine Schlüsselrolle in neurodegenerativen Prozessen spielt.
show moreshow less

Download full text files

  • application/pdf DissFranke.pdf (3098 KB)

    Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Cornelia Franke
URN:urn:nbn:de:hebis:30-48150
Referee:Walter E. Müller
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2007/08/30
Year of first Publication:2007
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2007/07/05
Release Date:2007/08/30
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS PPN:315858257
Institutes:Pharmazie
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Weitere biologische Literatur (eingeschränkter Zugriff)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG

$Rev: 11761 $