Following in Emil Fischer's footsteps: a site-selective probe of glucose acid-base chemistry

Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pKa) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonat
Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pKa) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below and above the first pKa reveal a change in glucose’s lowest ionization energy upon the deprotonation of neutral glucose and the subsequent emergence of its anionic counterpart. Site-specific insights into the solution-pH-dependent molecular structure changes are also shown to be accessible via C 1s photoelectron spectroscopy. The spectra reveal a considerably lower C 1s binding energy of the carbon site associated with the deprotonated hydroxyl group. The occurrence of photoelectron spectral fingerprints of cyclic and linear glucose prior to and upon deprotonation are also discussed. The experimental data are interpreted with the aid of electronic structure calculations. Our findings highlight the potential of liquid-jet photoelectron spectroscopy to act as a site-selective probe of the molecular structures that underpin the acid–base chemistry of polyprotic systems with relevance to environmental chemistry and biochemistry.
show moreshow less

Metadaten
Author:Sebastian Malerz, Karen Denise Mudryk, Lukáš Tomaník, Dominik Stemer, Uwe Hergenhahn, Tillmann Buttersack, Florian Trinter, Robert Seidel, Wilson Quevedo, Claudia Goy, Iain Wilkinson, Stephan Thürmer, Petr Slavíček, Bernd Winter
URN:urn:nbn:de:hebis:30:3-629544
DOI:http://dx.doi.org/10.1021/acs.jpca.1c04695
ISSN:1520-5215
Parent Title (English):The journal of physical chemistry
Publisher:Soc.
Place of publication:Washington, DC
Document Type:Article
Language:English
Date of Publication (online):2021/07/30
Date of first Publication:2021/07/30
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2022/05/18
Volume:125
Issue:32
Pagenumber:12
First Page:6881
Last Page:6892
Note:
L.T. and P.S. acknowledge support by the Czech Science Foundation, project no. 21-26601X (EXPRO). L.T. acknowledges Specific University Research grant no. A2_FCHI_2021_028. F.T. and B.W. acknowledge support from the MaxWater initiative of the Max-Planck-Gesellschaft. B.W. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and investigation programme (grant agreement no. 883759). R.S. and W.Q. acknowledge funding from the German Research Foundation through an Emmy-Noether grant (SE 2253/3-1). S.T. acknowledges support from the JSPS KAKENHI grant no. JP20K15229.
HeBIS PPN:496068091
Institutes:Physik
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0

$Rev: 11761 $