Funktionsweise und Anwendung von Channelrhodopsin 2

  • Channelrhodopsine sind blaulichtsensitive, Retinal-bindende Proteine aus der Grünalge Chlamydomonas reinhardtii. Channelrhodopsin 2 (ChR2) wurde als heptahelikaler, kationenselektiver Ionenkanal charakterisiert (Nagel et al., 2003). Wie die zur selben Proteinfamilie gehörende Protonenpumpe Bakteriorhodopsin (bR) wird ChR2 durch Licht aktiviert; allerdings wird hierbei ein passiver Strom ausgelöst, bei dem Kationen entsprechend ihres elektrochemischen Gradienten fließen. Aufgrund dieser Eigenschaft eignet sich ChR2 zur lichtinduzierten Depolarisation von Zellen und zur Auslösung von Aktionspotentialen in Neuronen, über deren Membran ein Konzentrationsgradient von Kationen anliegt (Boyden et al., 2005). Die Stimulation elektrischer Aktivität von ChR2-exprimierenden Neuronen im Hirngewebe von Mäusen, die ChR2 transgen exprimieren, kann beispielsweise genutzt werden, um die Konnektivität von Neuronen und Hirnbereichen zu untersuchen (z.B. Wang et al., 2007). Für diese und weitere Anwendungen war es interessant, ChR2 zelltyp- oder regionenspezifisch in Mäusen zu exprimieren. Zu diesem Zweck sollte ChR2/eGFP bicistronisch oder ChR2-YFP als Fusionsprotein unter einem ubiquitären Promotor exprimiert werden; die Expression sollte aber durch ein Stop-Element unterbunden werden, das von loxP-sites flankiert ist (unaktiviertes Transgen). Das Enzym Cre- Rekombinase entfernt durch Rekombination das Stop-Element an diesen Erkennungssequenzen, wodurch die ChR2-Expression ermöglicht werden sollte (aktiviertes Transgen). Die Cre-Rekombinase kann dabei sowohl viral als auch transgen unter zelltyp- und regionenspezifischen Promotoren exprimiert werden und damit die regionale Spezifität und den Zeitpunkt der ChR2-Expression bestimmen. Es wurden drei Mauslinien über Pronukleus-Injektionen erhalten, die den Reporter β-Galactosidase des unaktivierten Transgens exprimierten. Die Verpaarung von Mäusen dieser Linien mit Cre-Rekombinase-exprimierenden Mauslinien führte aber nur zu einer ineffizienten Aktivierung des Transgens, so dass ChR2-Expression einzig mittels RT-PCR nachgewiesen werden konnte. Nach viraler Expression der Cre-Rekombinase im Hippokampus konnte eine Aktivierung des ChR2-Transgens auch mittels Immunfluoreszenz gezeigt werden. Mangels GFP-Fluoreszenz waren die transgenen Linien aber nicht für gezielte elektrophysiologische Ableitungen verwendbar. In einem zweiten Ansatz wurden transgene Mäuse über embryonale Stammzellen (ES-Zellen) generiert. Bei diesem Ansatz wird eine geringere Kopienzahl des Transgens ins Genom integriert. In den ES-Zellen konnte durch transiente Cre-Rekombinase-Expression gezeigt werden, dass das Transgen effizient aktiviert werden konnte. Aus mehreren ES-Zell-Klonen wurden chimäre Mäuse erhalten, die zum jetzigen Zeitpunkt auf Keimbahntransmission getestet werden. Wie ChR2 einen Kationenkanal bildet und welche Transmembrandomänen und Aminosäuren daran beteiligt sind, ist unbekannt. Daher wurde im zweiten Teil dieser Arbeit untersucht, ob die Positionen E90, E97 und E101, welche in der zweiten Transmembranhelix untereinander zu liegen scheinen, Teil einer Ionenpore sein könnten. Um den Einfluss dieser Aminosäuren auf die Kationenleitung und/ oder – selektivität zu untersuchen, wurden diese Positionen substituiert und die resultierenden ChR2-Mutantenproteine in Xenopus laevis Oozyten exprimiert und elektrophysiologisch analysiert. Um Na+- bzw. Protonen-mediierte Ströme unterscheiden zu können, wurden Na+-haltige und Na+-freie Puffer verschiedener pH-Werte verwendet. Lichtinduzierte Ströme von ChR2E97A, ChR2E97Q, ChR2E97K und ChR2E101K waren im Vergleich zum Wildtyp stark reduziert, ausschließlich bei pH 4 zu detektieren und wohl hauptsächlich durch Protonen getragen. Die isofunktionale, aber ladungsneutrale Mutation ChR2E90Q zeigte nur geringe Unterschiede zum Wildtyp. Alaninsubstitution (E90A) als auch Ladungsinversion (E90K) führte zu starken Veränderungen des ChR2-Stroms im Vergleich zum Wildtyp. ChR2E90A zeigte im Vergleich zum Wildtyp reduzierte Protonenströme sowie einen erhöhten Natriumstrom, der durch Protonen inhibierbar war. Die Ladungsinversion ChR2E90K führte zu allgemein stark verminderten Leitfähigkeiten, lediglich bei pH 4 konnten noch Ströme gemessen werden. Die Ergebnisse sind der erste Hinweis auf eine Beteiligung von Glutamatresten an der Ionenleitfähigkeit in der Transmembranhelix 2 von ChR2.

Download full text files

  • PhD_thesis_Ruffert.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Karelia Ruffert
URN:urn:nbn:de:hebis:30-68426
Referee:Heinrich BetzGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/08/19
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/07/09
Release Date:2009/08/19
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:417058276
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG