Condensing on metric spaces : modeling, analysis and simulation

In this work, we extend the Hegselmann and Krause (HK) model, presented in [16] to an arbitrary metric space. We also present some theoretical analysis and some numerical results of the condensing of particles in finite 
In this work, we extend the Hegselmann and Krause (HK) model, presented in [16] to an arbitrary metric space. We also present some theoretical analysis and some numerical results of the condensing of particles in finite and continuous metric spaces. For simulations in a finite metric space, we introduce the notion "random metric" using the split metrics studies by Dress and al. [2, 11, 12].
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Mostafa Zahri
URN:urn:nbn:de:hebis:30-68016
Referee:Malte Sieveking
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2009/08/19
Year of first Publication:2009
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2009/07/31
Release Date:2009/08/19
Tag:Condensing ; collective intelligence ; discrete dynamical system ; forming a group ; manifold and geodesic ; multi-agents system ; random metric
HeBIS PPN:214916375
Institutes:Mathematik
Dewey Decimal Classification:510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $