Analyse von Form, Eigenschaften und "Druggability" von Proteinbindetaschen

Analysis of shape, properties and "druggability" of protein binding pockets

Kenntnisse über die dreidimensionale Struktur therapeutisch relevanter Zielproteine bieten wertvolle Informationen für den rationalen Wirkstoffentwurf. Die stetig wachsende Zahl aufgeklärter Kristallstrukturen von Protei
Kenntnisse über die dreidimensionale Struktur therapeutisch relevanter Zielproteine bieten wertvolle Informationen für den rationalen Wirkstoffentwurf. Die stetig wachsende Zahl aufgeklärter Kristallstrukturen von Proteinen ermöglicht eine qualitative und quantitative rechnergestützte Untersuchung von spezifischen Protein-Liganden Wechselwirkungen. Im Rahmen dieser Arbeit wurden neue Algorithmen für die Identifikation und den Ähnlichkeitsvergleich von Proteinbindetaschen und ihren Eigenschaften entwickelt und in dem Programm PocketomePicker zusammengefasst. Die Software gliedert sich in die Routinen PocketPicker, PocketShapelets und PocketGraph. Ferner wurde in dieser Arbeit die Methode ReverseLIQUID reimplementiert und im Rahmen einer Kooperation für das strukturbasierte Virtuelle Screening angewendet. Die genannten Methoden und ihre wissenschaftliche Anwendungen sollte hier zusammengefasst werden: Die Methode PocketPicker ermöglicht die Vorhersage potentieller Bindetaschen auf Proteinoberflächen. Diese Technik implementiert einen geometrischen Ansatz auf Basis „künstlicher Gitter“ zur Identifikation zusammenhängender vergrabener Bereiche der Proteinoberfläche als Orte möglicher Ligandenbindestellen. Die Methode erreicht eine korrekte Vorhersage der tatsächlichen Bindetasche für 73 % der Einträge eines repräsentativen Datensatzes von Proteinstrukturen. Für 90 % der Proteinstrukturen wird die tatsächlich Ligandenbindestelle unter den drei wahrscheinlichsten vorhergesagten Taschen gefunden. PocketPicker übertrifft die Vorhersagequalität anderer etablierter Algorithmen und ermöglicht Taschenidentifikationen auf apo-Strukturen ohne signifikante Einbußen des Vorhersageerfolges. Andere Verfahren weisen deutlich eingeschränkte Ergebnisse bei der Anwendung auf apo-Strukturen auf. PocketPicker erlaubt den alignmentfreien Ähnlichkeitsvergleich von Bindetaschenfor-men durch die Kodierung berechneter Bindevolumen als Korrelationsdeskriptoren. Dieser Ansatz wurde erfolgreich für Funktionsvorhersage von Bindetaschen aus Homologiemodellen von APOBEC3C und Glutamat Dehydrogenase des Malariaerregers Plasmodium falciparum angewendet. Diese beiden Projekte wurden in Zusammenarbeit mit Kollaborationspartnern durchgeführt. Zudem wurden PocketPicker Korrelationsdeskriptoren erfolgreich für die automatisierte Konformationsanalyse der enzymatischen Tasche von Aldose Reduktase angewendet. Für detaillierte Analysen der Form und der physikochemischen Eigenschaften von Proteinbindetaschen wurde in dieser Arbeit die Methode PocketShapelets entwickelt. Diese Technik ermöglicht strukturelle Alignments von extrahierten Bindevolumen durch Zerlegungen der Oberfläche von Proteinbindetaschen. Die Überlagerung gelingt durch die Identifikation strukturell ähnlicher Oberflächenkurvaturen zweier Taschen. PocketShapelets wurde erfolgreich zur Analyse funktioneller Ähnlichkeit von Bindetaschen verwendet, die auf Betrachtungen physikochemischer Eigenschaften basiert. Zur Analyse der topologischen Vielfalt von Bindetaschengeometrien wurde in dieser Arbeit die Methode PocketGraph entwickelt. Dieser Ansatz nutzt das Konzept des sog. „Wachsenden Neuronalen Gases“ aus dem Bereich des maschinellen Lernens für eine automatische Extraktion des strukturellen Aufbaus von Bindetaschen. Ferner ermöglicht diese Methode die Zerlegung einer Bindestelle in ihre Subtaschen. Die von PocketPicker charakterisierten Taschenvolumen bilden die Grundlage für die Methode ReverseLIQUID. Dieses Programm wurde in dieser Arbeit weiterentwickelt und im Rahmen einer Kooperation zur Identifikation eines Inhibitors der Serinprotease HtrA des Erregers Helicobacter pylori verwendet. Mit ReverseLIQUID konnte ein strukturbasiertes Pharmakophormodell für das Virtuelle Screening erstellt werden. Dieser Ansatz ermöglichte die Identifikation einer Substanz mit niedrig mikromolarer Affinität gegenüber der Zielstruktur.
show moreshow less
Knowledge of the three-dimensional structure therapeutically relevant target proteins provides valuable information for rational drug design. The constantly increasing numbers of available crystal structures enable quali
Knowledge of the three-dimensional structure therapeutically relevant target proteins provides valuable information for rational drug design. The constantly increasing numbers of available crystal structures enable qualitative and quantitative analysis of specific protein-ligand interactions in silico. In this work novel algorithms for the identification and the comparison of protein binding sites and their properties were developed and combined in the program PocketomePicker. The software combines the routines PocketPicker, PocketShapelets and PocketGraph. Furthermore, the method ReverseLIQUID was re-implemented in this work and used for the structure-based virtual screening with a cooperation partner. The programs and their scientific applications are summarized here: The method PocketPicker is designed for the prediction of potential binding sites on protein surfaces. The technique implements a geometric approach based on the concept of “artificial grids” for the identification of continuous buried regions of the protein surface that might act as potential ligand binding sites. The method yields correct predications of the actual binding site for 73 % of the entries in a representative data set of protein structures. For 90 % of the proteins the actual binding site is found among the top three predicted binding pockets. PocketPicker exceeds the predictive quality of other established algorithms and enables correct binding site identifications on apo structures without significant drops of the prediction success. This is not achieved by other programs. PocketPicker enables alignment-free comparisons of binding site shapes by encoding extracted binding volumes as correlation vectors. This approach was used for successful predictions of binding site functionality for homology models of APOBEC3C and glutamate dehydrogenase of the malaria pathogen Plasmodium falciparum. These projects were carried out with collaboration partners. Furthermore, PocketPicker correlation descriptors were used for automated analysis of binding site conformations of aldose reductase active sites. The method PocketShapelets was implemented in this work for detailed analysis of shapes and physicochemical properties of protein binding sites. This approach enables structural alignments of extracted binding volumes by surface decomposition of protein binding sites. The structural superposition is achieved by identification of structurally similar surface curvatures of different binding pockets. PocketShapelets was successfully used for the analysis of functional similarity of binding sites based on observations of physicochemical properties. PocketGraph was developed for the analysis of the structural diversity of binding site geometries. This approach uses the “Growing Neural Gas” concept used in machine learning for an automated extraction of the structural organization of binding sites. Furthermore, the method enables the decomposition of binding sites into subpockets. The pocket volumes characterized by PocketPicker are the foundation of another program called ReverseLIQUID. This method was refined in this work and used for the identification of a Helicobacter pylori serine protease HtrA inhibitor. This project was performed with a collaboration partner. A receptor-based pharmacophore model was derived using ReverseLIQUID and used for virtual screening. This approach led to the identification of a substance with low micromolar affinity towards the target protein.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Martin Weisel
URN:urn:nbn:de:hebis:30-68454
Referee:Gisbert Schneider
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/08/21
Year of first Publication:2009
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2009/08/14
Release Date:2009/08/21
Tag:Druggability ; Formvergleich ; Moleküldesign; Rezeptorbasiert
Drug design; Druggability ; Receptor-based ; Shapecomparison
SWD-Keyword:Aktives Zentrum ; Bindestelle; Korrelation ; Neuronales Netz ; Prognose ; Screening ; Wirkstoff-Rezeptor-Bindung
HeBIS PPN:215026578
Institutes:Biowissenschaften
Dewey Decimal Classification:570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $