Allosteric regulation of the bacterial K+ channel KtrAB

  • Bacteria are true artists of survival, which rapidly adapt to environmental changes like pH shifts, temperature changes and different salinities. Upon osmotic shock, bacteria are able to counteract the loss of water by the uptake of potassium ions. In many bacteria, this is accomplished by the major K+ uptake system KtrAB. The system consists of the K+-translocating channel subunit KtrB, which forms a dimer in the membrane, and the cytoplasmic regulatory RCK subunit KtrA, which binds non-covalently to KtrB as an octameric ring. This unique architecture differs strongly from other RCK-gated K+ channels like MthK or GsuK, in which covalently tethered cytoplasmic RCK domains regulate a single tetrameric pore. As a consequence, an adapted gating mechanism is required: The activation of KtrAB depends on the binding of ATP and Mg2+ to KtrA, while ADP binding at the same site results in inactivation, mediated by conformational rearrangements. However, it is still poorly understood how the nucleotides are exchanged and how the resulting conformational changes in KtrA control gating in KtrB is still poorly understood. Here,I present a 2.5-Å cryo-EM structure of ADP-bound, inactive KtrAB, which for the first time resolves the N termini of both KtrBs. They are located at the interface of KtrA and KtrB, forming a strong interaction network with both subunits. In combination with functional and EPR data we show that the N termini, surrounded by a lipidic environment, play a crucial role in the activation of the KtrAB system. We are proposing an allosteric network, in which an interaction of the N termini with the membrane facilitates MgATP-triggered conformational changes, leading to the active, conductive state.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Janina Stautz
URN:urn:nbn:de:hebis:30:3-678520
DOI:https://doi.org/10.21248/gups.67852
Place of publication:Frankfurt am Main
Referee:Inga HäneltORCiDGND, Klaas Martinus PosORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/04/25
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/04/20
Release Date:2022/05/02
Page Number:212
Last Page:186
HeBIS-PPN:494137428
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht