Wann tickt die innere Uhr? : Untersuchung genexpressiver Vorgänge während der ontogenetischen Entwicklung zirkadianer Rhythmen und ihrer Synchronisation in der Maus

  • Das Leben aller Organismen wird grundlegend durch den tages- und jahreszeitlich bedingten Wechsel der Beleuchtungsverhältnisse geprägt. Die Anpassung der Stoffwechselprozesse und Verhaltensweisen an diese Oszillationen erfolgt nicht passiv, sondern wird durch eine innere Uhr gesteuert. Tageszeitliche Rhythmen, die auch ohne den Einfluss äußerer, periodisch verlaufender Umgebungsreize (Zeitgeber) ablaufen, werden als zirkadiane Rhythmen bezeichnet. Im Säugetier steuert ein endogener Rhythmusgenerator im Nucleus suprachiasmaticus (SCN) zirkadiane Rhythmen, indem er periphere Oszillatoren miteinander synchronisiert. Auf molekularer Ebene besteht dieser endogener Rhythmusgenerator aus Aktivatoren (BMAL1 und CLOCK/NPAS2) und Inhibitoren (PER1/2 und Cry1/2), die in Rückkopplungsschleifen die Grundlage für die Rhythmogenese steuern. Die Synchronisation dieses molekularen Uhrwerkes an die Umgebungszeit erfolgt durch Licht, das in der Retina wahrgenommen und an das SCN weitergeleitet wird. Die Signaltransduktionskaskaden nach einem Lichtpuls in der frühen und der späten Nacht unterscheiden sich dabei wesentlich: Ein Lichtpuls während der frühen Nacht führt zu einer erhöhten Freisetzung von Ca2+-Ionen über Ryanodin Rezeptoren (RYR), während ein Lichtpuls während der späten Nacht zu einer erhöhten Guanylylcyclase Aktivität führt. Um zu untersuchen, wie der endogene Rhythmusgenerator seinen Lichteingang reguliert, wurde die Licht-vermittelte Phasenverzögerung in BMAL1+/+- (profizienten) und BMAL1-/-- (defizienten) Mäusen untersucht. Die Befunde aus den in-situ Hybridisierungsstudien, RTQ-PCR und immunhistochemischen Untersuchungen dieser Arbeit zeigten, dass in BMAL1-/--Mäusen die Licht-induzierte mPer-Expression während der frühen Nacht selektiv beeinträchtigt ist. Zudem konnte gezeigt werden, dass die mRNA- und Proteinmengen von RYRs in BMAL1-/--Mäusen dramatisch reduziert waren. Ryr1:: und Ryr2::Luciferase-Reportersstudien zeigten darüber hinaus, dass die Ryr-Expression durch CLOCK/BMAL1 aktiviert und durch CRY1inhibiert werden kann. Diese Ergebnisse liefern den ersten Beweis dafür, dass der endogene Rhythmusgenerator des Säugers die Signalübertragung seines eigenen Lichteingangs regulieren kann. Weiterhin wurde in dieser Arbeit die ontogenetische Entwicklung des endogenen Rhythmusgenerators im SCN und in einem Melatonin-abhängigen peripheren Oszillator, der PT, untersucht und miteinander verglichen. Dazu wurden die Uhrengenproteine im fetalen (E18), postnatalen (P2 & P10) und adulten SCN und in der PT von C3H-Mäusen zu vier verschiedenen zirkadianen Zeitpunkten mittels Immunhistochemie untersucht. Die Anzahl immunreaktiver SCN-Zellen gegen alle untersuchten Uhrengenproteine (außer BMAL1) war im Fetus signifikant niedriger, als in der adulten Maus. Auch im SCN neonataler (P2) Mäuse erreichte die Anzahl immunreaktiver Zellen noch nicht das Niveau der adulten Maus. Erst 10 Tage nach der Geburt (P10) zeigen alle Uhrengenproteine im SCN ein adultes Verteilungsmuster. Offenbar reift das Uhrwerk im SCN von Mäusen graduell während der postnatalen Entwicklungsphase. Dabei besteht eine zeitliche Korrelation zwischen der Reifung des endogenen Rhythmusgenerators im SCN und der Ausbildung von inter-suprachiasmatischen und retino-suprachiaamatischen neuronalen Kontakten. Im Gegensatz zum SCN zeigte der Melatonin-abhängigen Oszilllator in der PT bereits im Fetus einen nahezu vollständig ausgeprägten Rhythmus der Uhrengenproteine. Da das fetale Pinealorgan noch nicht zur rhythmischen Melatonin-Synthese fähig ist, liegt es nahe, dass das mütterliche Melatonin die rhythmische Expression der Uhrengene in der fetalen PT reguliert. Wie in vitro Untersuchungen an PER2::LUCIFERASE-Mäusen zeigten, hat das mütterliche Melatonin offenbar auch einen modulierenden Einfluss auf den fetalen SCN. Bei diesen Mäusen konnte im fetalen und postnatalen SCN ein zirkadianer Rhythmus in der PER2-Synthese nachgewiesen werden, der eine relativ lange Periodenlänge aufwies und nach 3 Tagen zum Erliegen kam. Eine Stimulation mit Melatonin führte zu einer deutlichen Verkürzung der Periodenlänge im PER2-Rhythmus. Folglich scheint das mütterliche Melatonin eine wichtige Quelle für Informationen der Umgebungszeit im Fetus zu sein. Um die Uhrengenexpression während der Maus-Ontogenese in vitro auf zellulärer Ebene darzustellen, wurde in dieser Arbeit zudem ein vom murinen Per2-Promoter angetriebenes DsRed- Reportersystem etabliert und der Versuch begonnen, eine darauf basierende transgene Maus zu generieren.

Download full text files

  • Nariman_Ansari_Doktorarbeit_08.05.2009.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nariman Ansari
URN:urn:nbn:de:hebis:30-66824
Referee:Christian Winter, Charlotte von GallORCiDGND
Advisor:Charlotte von Gall
Document Type:Doctoral Thesis
Language:German
Year of Completion:2008
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/05/08
Release Date:2009/10/05
Page Number:179
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:417689217
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG