Geochemical properties of shells of Arctica islandica (Bivalvia) - implications for environmental and climatic change

  • Trace elemental concentrations of bivalve shells content a wealthy of environmental and climatic information of the past, and therefore the studies of trace elemental distributions in bivalve shells gained increasing interest lately. However, after more than half century of research, most of the trace elemental variations are still not well understood and trace elemental proxies are far from being routinely applicable. This dissertation focuses on a better understanding of the trace elemental chemistry of Arctica islandica shells from Iceland, and paving the way for the application of the trace elemental proxies to reconstruct the environmental and climatic changes. Traits of trace elemental concentrations on A. islandica shells were explored and evaluated. Then based the geochemical traits of the shells, four non-environmental/climatic controlling is indentified. (1) Trace elemental concentrations of bivalve shells are effected by early diagenesis by the leach or exchange of elemental ions, especially in shell tip part, even with the protection of periostrucum; (2) The analytical methods also affect the results of trace elemental concentrations, especially for the element, such as Mg, which is highly enriched in organic matrices; (3) Shell organic matrices are found play a dominating role on the concentration of trace elements on A. islandica shells. Most trace elements only occurred in insoluble organic matrices (IOM), although others are only found in the carbonate fraction. IOM of A. islandica shells is significantly enriched in Mg, while Li and Na are more deplete in IOM, but enriched in shell carbonate. Ba is more or less even contented in IOM and shell carbonate. The concentrations of certain elements vary between primary layer and secondary layer; (4) The vital /physiological controlling on trace elemental distributions of bivalve shells is also confirmed. Six elemental (B, Na, Mg, Mn, Sr, and Ba) concentrations show significant correlation (exponential functions) with ontogenetic age and shell grow rates (logarithmic equations). It is worthy to remark that B, Mg, Sr and Ba concentrations are negatively correlated with shell growth rate, positive with ontogenetic age, while the concentrations of Na and Mn show the opposite trends. At last, all the controlling described above can be taken into account and corrected to extract the environmental and climatic signal by a kind of standardization. The derived six exponential functions of the high correlations between six trace elemental concentrations and ontogenetic year are applied to make the standardization of these element-Ca ratios. The gotten standardized indices are compared with the variations of environmental and climatic parameters in this region, and many correlations are found. Standardized indices of Sr/Ca ratios are strongly related to the sun spot number, autumn NAO, autumn Europe surface air temperature (SAT) and Arctic sea surface temperature anomaly (TA), and those of Mg/Ca ratios are strongly associated with Arctic TA, Europe SAT and Solar variation (irradiance). The variations of autumn Europe SAT demonstrated more similarity with standardized indices of B/Ca than other parameters. Except for the SAT index of Arctic, the standardized indices of Na/Ca showed no distinct relation to temperature. European precipitation and the Arctic sea level pressure index compared well the Na/Ca ratios of the shells, and so did the autumn NAO. Standardized indices of Mn/Ca were correlated with the number of hurricanes in the North Atlantic, Northern Europe SAT and sun spot number.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Zengjie Zhang
URN:urn:nbn:de:hebis:30-75290
Referee:Bernd R. Schöne
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2010/02/26
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/02/24
Release Date:2010/02/26
HeBIS-PPN:221114920
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoDeutsches Urheberrecht