Kristallstruktur-Design und konzeptionelle Entwicklung zur frühzeitigen Erkennung von supramolekularen Komplexen

Das Ziel dieser Arbeit ist die Synthese von nicht-kovalenten supramolekularen Komplexen, um nachfolgend aus den Kristallstrukturen dieser Verbindungen bessere Einsichten über die H-Brückenwechselwirkungen zwischen den or
Das Ziel dieser Arbeit ist die Synthese von nicht-kovalenten supramolekularen Komplexen, um nachfolgend aus den Kristallstrukturen dieser Verbindungen bessere Einsichten über die H-Brückenwechselwirkungen zwischen den organischen Molekülen zu erlangen. Um an dieses Ziel zu kommen, wurde ein Konzept zur gezielten Synthese von supramolekularen Komplexen entwickelt. Die Steuerung des Co-Kristallisationsprozesses ist keine einfache Aufgabe, deshalb darf der Verlauf einer solchen Synthese von nicht-kovalenten Verbindungen nicht einfach dem Zufall überlassen werden. Der Start erfolgt mit einer gründlichen Auswahl der Verbindungen durch Intuition mit Hilfsmitteln (Chemikalienkataloge und chemische Datenbanken). In einem Selektionsabschnitt werden chemische Datenbanken, analytische Methoden und rechnergestützte Programme zu Hilfe genommen. Aussichtsreiche Kandidaten werden mit dem Programm SUPRA getestet; so zeigt sich, ob das gewünschte H-Brückenmuster prinzipiell realisierbar ist. Auch die verschiedenen Vorproben zum Test auf H-Brücken gebundene Komplexe (siehe Kapitel 8 und 9) liefern wertvolle Informationen. Mit den so ausgewählten Kandidaten wurden schließlich Kristallisationsversuche angesetzt. Falls möglich können Strukturvorhersagen der jeweiligen Komplexe mit Hilfe von Strukturvorhersageprogrammen getroffen werden (siehe Kapitel 7). Die erhaltenen Co-Kristalle werden anschließend am Einkristalldiffraktometer gemessen und darauf folgend die Kristallstrukturen gelöst. Um die Reaktionsbedingungen zur Bildung von bestimmten supramolekularen Komplexen kontrollieren zu können, wurden die Gitterenergie des Komplexes berechnet und die Schmelzpunkte bestimmt. Mit Kenntnis der Gitterenergie des Komplexes, der Edukte bzw. der Pseudokomplexe kann die Reaktionsbedingung so eingestellt werden, dass nur eine bestimmte Verbindung bei einer vorgegebenen Reaktionsbedingung auskristallisiert. Der Einfluss bzw. die Auswahl von Lösungsmitteln darf bei Co-Kristallisationsprozessen nicht vernachlässigt werden. Der erste Abschnitt dieser Arbeit befasst sich mit der Synthese von supramolekularen Komplexen aus Komponenten, die ausschließlich zwei Protonen-Akzeptoren bzw. zwei Protonen-Donoren (AA-DD-Muster) beinhalten. Die fehlgeschlagenen Experimenten passen zur Trefferquote dieser Verbindungsklasse in der CSD. Der Grund für diesen Misserfolg ist grundsätzlich auf die geometrische Anordnung der freien Elektronenpaare der Akzeptoren zurückzuführen. Sind Sauerstoffatome an solchen H-Brückenmustern als H-Akzeptoren beteiligt, ist es oft nicht möglich, eine lineare Anordnung der H-Donorengruppe mit diesen Sauerstoffatomen als Akzeptoren zu bewerkstelligen. Nach erfolglosen Bemühungen wandten wir uns Verbindungen zu, die mindestens drei Akzeptoren bzw. Donoren im jeweiligen Molekül aufweisen. Für dieses Experiment wurden zunächst starre, kleine organische Moleküle ausgesucht. Das AAA-DDD-Muster konnte im gesamten Verlauf dieser Arbeit nicht hergestellt werden. Es ist nicht leicht, eine Verbindung zu synthetisieren, bei der alle H-Akzeptorgruppen auf einer Seite benachbart angeordnet sind. Eine Literaturaussage, dass Verbindungen mit dem AAA-DDD-Muster die stabilsten aller dreifach gebildeten Wasserstoffbrückenbindungen sind, konnte daher nicht experimentell verifiziert werden. Unsere Gruppe hat daraufhin versucht, die bekannten H-Brückenmuster aus den Watson-Crick-Basenpaarungen (AAD-DDA) sowie das ADA-DAD-Muster nachzuahmen. Nur mit dem Muster ADA-DAD konnten Erfolge erzielt werden. Die entsprechenden Komplexe konnten nicht nur erfolgreich synthetisiert, sondern auch durch die Einführung sterisch anspruchsvoller Substituenten die Bildung von unerwünschten Wasserstoffbrückenmustern gezielt verhindert werden. Nachdem die Synthese von zahlreichen Komplexen gelang, sind wir zu pharmazeutischen Wirkstoffen übergegangen. Mit diesem Schritt soll eine Brücke zur Pharmazie geschlagen werden. Vier pharmazeutische Wirkstoffe mit definiertem Wasserstoffbrückenmuster wurden ausgesucht und anschließend mit den passenden Gegenstücken zur Kristallisation angesetzt. Nur für Trimethoprim konnten Co-Kristalle erhalten werden. Mit diesem Wirkstoff konnte anschließend gezeigt werden, wie sich Moleküle in bestimmten chemischen Umgebungen im Festkörper anpassen und ihre geometrische Anordnung ändern, um die bestmöglichen Wechselwirkungen zu erreichen. Sämtliche Kristallstrukturen von Trimethoprim, die in der CSD in neutraler Form aufzufinden sind, demonstrieren, wie flexibel diese Verbindung in Abhängigkeit von der Umgebung ihre Konformation ändert. In dieser Arbeit konnte auch gezeigt werden, wie Kristallisationsbedingungen verändert werden sollten, um den gewünschten Komplex herstellen zu können. Die Schmelzpunktbestimmung sowie die Kombination mit der Gitterenergie dienten dazu, für die gegebenen Verbindungen die passenden Bedingungen für den Kristallisationsprozess zu ermitteln. Die Schmelztemperaturen von drei in der Struktur ähnlichen Komplexen liegen jeweils zwischen den Schmelztemperaturen ihrer Ausgangsverbindungen, was zu der Annahme verleitet, dass bei höheren Temperaturen die Verbindungen mit höheren Schmelztemperaturen und somit stabileren Kristallgittern bevorzugt gebildet werden. Wird die Temperatur gesenkt, so könnten alle Formen von Kristallen (die der Edukte, Pseudokomplexe und der supramolekularen Komplexe) in einer einzigen Probe anfallen. Um die Gültigkeit dieser Annahme zu überprüfen, bedarf es der Durchführung von Pulveraufnahmen der gesamten Proben. Diese konnten aufgrund der geringen Mengen an Kristallsubstanz nicht realisiert werden. In Zukunft wird das Augenmerk besonders auf die Erforschung von supramolekularen Komplexen mit anspruchsvolleren Freiheitsgraden gelegt. Diese Komplexe sollen mehrere Rotationsfreiheitsgrade besitzen bzw. aus mehr als vier H-Brücken komplementär zusammengesetzt sein. Darüber hinaus ist unsere Gruppe immer noch bemüht, Komplexe zu co-kristallisieren, die am Ende die Muster bzw. die Konstellationen aufweisen, die von vornherein konzeptionell ausgearbeitet wurden.
show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Ton Quoc Cuong
URN:urn:nbn:de:hebis:30-75024
Referee:Ernst Egert
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/03/07
Year of first Publication:2009
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2009/12/18
Release Date:2011/03/07
Institutes:Biochemie und Chemie
Dewey Decimal Classification:540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $