Global dataset of monthly growing areas of 26 irrigated crops : version 1.0

  • A data set of monthly growing areas of 26 irrigated crops (MGAG-I) and related crop calendars (CC-I) was compiled for 402 spatial entities. The selection of the crops consisted of all major food crops including regionally important ones (wheat, rice, maize, barley, rye, millet, sorghum, soybeans, sunflower, potatoes, cassava, sugar cane, sugar beets, oil palm, rapeseed/canola, groundnuts/peanuts, pulses, citrus, date palm, grapes/vine, cocoa, coffee), major water-consuming crops (cotton), and unspecified other crops (other perennial crops, other annual crops, managed grassland). The data set refers to the time period 1998-2002 and has a spatial resolution of 5 arc minutes by 5 arc minutes which is 8 km by 8 km at the equator. This is the first time that a data set of cell-specific irrigated growing areas of irrigated crops with this spatial resolution was created. The data set is consistent to the irrigated area and water use statistics of the AQUASTAT programme of the Food and Agriculture Organization of the United Nations (FAO) (http://www.fao.org/ag/agl/aglw/aquastat/main/index.stm) and the Global Map of Irrigation Areas (GMIA) (http://www.fao.org/ag/agl/aglw/aquastat/irrigationmap/index.stm). At the cell-level it was tried to maximise consistency to the cropland extent and cropland harvested area from the Department of Geography and Earth System Science Program of the McGill University at Montreal, Quebec, Canada and the Center for Sustainability and the Global Environment (SAGE) of the University of Wisconsin at Madison, USA (http://www.geog.mcgill.ca/~nramankutty/ Datasets/Datasets.html and http://geomatics.geog.mcgill.ca/~navin/pub/Data/175crops2000/). The consistency between the grid product and the input data was quantified. MGAG-I and CC-I are fully consistent to each other on entity level. For input data other than CC-I, the consistency of MGAG-I on cell level was calculated. The consistency of MGAG-I with respect to the area equipped for irrigation (AEI) of GMIA and to the cropland extent of SAGE was characterised by the sum of the cell-specific maximum difference between the MGAG-I monthly total irrigated area and the reference area when the latter was exceeded in the grid cell. The consistency of the harvested area contained in MGAG-I with respect to SAGE harvested area was characterised by the crop-specific sum of the cell-specific difference between MGAG-I harvested area and the SAGE harvested area when the latter was exceeded in the grid cell. In all three cases, the sums are the excess areas that should not have been distributed under the assumption that the input data were correct. Globally, this cell-level excess of MGAG-I as compared to AEI is 331,304 ha or only about 0.12 % of the global AEI of 278.9 Mha found in the original grid. The respective cell-level excess of MGAG-I as compared to the SAGE cropland extent is 32.2 Mha, corresponding to about 2.2 % of the total cropland area. The respective cell-level excess of MGAG-I as compared to the SAGE harvested area is 27 % of the irrigated harvested area, or 11.5 % of the AEI. In a further step that will be published later also rainfed areas were compiled in order to form the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000). The data set can be used for global and continental-scale studies on food security and water use. In the future, it will be improved, e.g. with a better spatial resolution of crop calendars and an improved crop distribution algorithm. The MIRCA2000 data set, its full documentation together with future updates will be freely available through the following long-term internet site: http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/MIRCA/index.html. The research presented here was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the framework of the research project entitled "Consistent assessment of global green, blue and virtual water fluxes in the context of food production: regional stresses and worldwide teleconnections". The authors thank Navin Ramankutty and Chad Monfreda for making available the current SAGE datasets on cropland extent (Ramankutty et al., 2008) and harvested area (Monfreda et al., 2008) prior to their publication.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Felix Theodor Portmann, Stefan Siebert, Christian Bauer, Petra DöllORCiDGND
URN:urn:nbn:de:hebis:30-54494
Parent Title (German):Frankfurt hydrology paper ; 6
Series (Serial Number):Frankfurt Hydrology Paper (6)
Publisher:Univ., Inst. of Physical Geography
Place of publication:Frankfurt (Main)
Document Type:Working Paper
Language:English
Year of Completion:2008
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2008/04/15
HeBIS-PPN:197797105
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoDeutsches Urheberrecht