• search hit 1 of 1
Back to Result List

Functional significance of E2 state stabilization by specific α/β-subunit interactions of Na,K- and H,K-ATPase

  • The β-subunits of Na,K-ATPase and H,K-ATPase have important functions in maturation and plasma membrane targeting of the catalytic α-subunit but also modulate the transport activity of the holoenzymes. In this study, we show that tryptophan replacement of two highly conserved tyrosines in the transmembrane domain of both Na,K- and gastric H,K-ATPase β-subunits resulted in considerable shifts of the voltage-dependent E1P/E2P distributions toward the E1P state as inferred from presteady-state current and voltage clamp fluorometric measurements of tetramethylrhodamine-6-maleimide-labeled ATPases. The shifts in conformational equilibria were accompanied by significant decreases in the apparent affinities for extracellular K+ that were moderate for the Na,K-ATPase β-(Y39W,Y43W) mutation but much more pronounced for the corresponding H,K-ATPase β-(Y44W,Y48W) variant. Moreover in the Na,K-ATPase β-(Y39W,Y43W) mutant, the apparent rate constant for reverse binding of extracellular Na+ and the subsequent E2P-E1P conversion, as determined from transient current kinetics, was significantly accelerated, resulting in enhanced Na+ competition for extracellular K+ binding especially at extremely negative potentials. Analogously the reverse binding of extracellular protons and subsequent E2P-E1P conversion was accelerated by the H,K-ATPase β-(Y44W,Y48W) mutation, and H+ secretion was strongly impaired. Remarkably tryptophan replacements of residues in the M7 segment of Na,K- and H,K-ATPase α-subunits, which are at interacting distance to the β-tyrosines, resulted in similar E1 shifts, indicating their participation in stabilization of E2. Thus, interactions between selected residues within the transmembrane regions of α- and β-subunits of P2C-type ATPases exert an E2-stabilizing effect, which is of particular importance for efficient H+ pumping by H,K-ATPase under in vivo conditions.

Download full text files

Export metadata

Metadaten
Author:Katharina L. Dürr, Neslihan Neslihan Tavraz, Robert E. DempskiGND, Ernst BambergGND, Thomas FriedrichORCiDGND
URN:urn:nbn:de:hebis:30:3-764368
DOI:https://doi.org/10.1074/jbc.M808101200
ISSN:0021-9258
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/19064992
Parent Title (English):Journal of biological chemistry
Publisher:American Society for Biochemistry and Molecular Biology Publications
Place of publication:Bethesda, Md
Document Type:Article
Language:English
Date of Publication (online):2021/01/04
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/02/22
Volume:284.2009
Issue:6
Page Number:13
First Page:3842
Last Page:3854
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International